Per Martin-Lof

aus
Perci Diaconis & Brian Skyrms,

Ten great ideasb about chance.
Princeton University Press 2018

CHAPTER 8

ALGORITHMIC RANDOMNESS

Can computers generate random sequences? Random number—
generating programs purport to do so. Can nature generate random
sequences? Do we really have a clear idea what an objectively random
sequence really is? You will remember that when we left von Mises
theory in chapter 4, even at that highly idealized level, the theory of
a random sequence was not theoretically satisfactory.

But random sequences are also important at a very practical
level. In almost every walk of scientific life, simulations have a role
to play, and these require sources of random numbers. So do secret
codes used by spies, banks, and the Internet for secure communica-
tions and secure transactions. It turns out that often they are not
sufficiently random, and then some bad science and bad security
results.

The efforts to generate and test random numbers have deep phil-
osophical tendrils. Our chapter begins at the practical end and then

146 CHAPTER 8

turns to logicians’ efforts to define perfect randomness. The last sec-
tion combines these concerns.

COMPUTER GENERATION OF RANDOM NUMBERS

Computers usually work with finite things, and we focus on an casy,
widely used case: generating random numbers in the natu ral nu rnbe-rs
{0, 1, 2, ..., N} Thus one wants a sequence, X(1), X(2), X(3), ..., In
this range that is uniform and independent.

The standard schemes are deterministic. They choose X(Q1)
“somehow”—by human input of the seed or using the number of mil-
liseconds since the start of day—and proceed by

X(n +1)=f(X(n)),

with f being a fixed function. A classic example, RANDU, had
f(7)=65,539 - j (mod 2*'). RANDU was a widely used random num-
ber generator in the 1960s, until it was shown that when used to pllot
random points in three dimensions—the coordinates of a point
being three consecutive “random” numbers—the points clustered on
planes. This is a decidedly nonrandom outcome! In 1968 George Mar-
saglia published a proof that all schemes in the same general class as
RANDU would have the same defect.’

More sophisticated variants use higher order recursions. In an early
“bible” of random number generation,? the author’s favorite genera-
tor was X,,; =X, 54 - X,ss (mod 232-1). This requires starting with
seed X, X, . . . , X55. The most popular modern generator, Mersenne
Twister,? uses a similar scheme.

Do these schemes work? Well, yes and no. For some tasks, such
as computing integrals and playing computer games, they have usu-
ally done well. However, there is a long history of failures as well.
In 1993, a New York Times article* recorded a failure of several new
and improved random number generation schemes to solve routine
instances of a statistical physics problem whose correct solution was
known analytically. We know casino hustlers who capitalize on the
fact that today’s slot machines work with the very simple generators
just described. By observing a few hundred pulls of the handle, they

ALGORITHMIC RANDOMNESS 147

figure out N and f{7). If they know these and the current X(z), they
know X(n+1), X(n +2), and so on. They watch play until a big jackpot
is due. Then they “accidentally” spill coffee on the current player and
(after Oops, please take this $50 chip for cleaning), they take over,
play, and collect. Bank fraud and security break-ins on computer sys-
tems are reported daily.

If casinos, bankers, and the CIA can’t get it right, this suggests that
there might be a basic problem! Random numbers are usually tested
by using a battery of ad hoc tests. (For instance, will high and low fol-
low each other like coin tossing should? What about consecutive sets of
3, odd, and even, and so on?) These tests embody good common sense,
but we must remember that random numbers are called on for very
disparate tasks. Good for some tests does not mean good for others.

For Donald Knuth’s random generator, the test that does it in is
called the birthday spacings test. Get the generator to generate X(1),
X(2), . . ., X(500), between 1 and 1,000,000. Order these (say, from
smallest to largest). Consider the “spacings,” largest-second largest,
second largest-third largest, Look at the number of repeated val-
ues among the spacings. The approximate distribution for the num-
ber of repeats can be determined theoretically, and Knuth’s genera-
tor produced numbers 16 times too large. There are some tests with
some claim to generality: if you pass this test, you will pass a whole
slew of other tests. (One is called the spectral test.) But these are far too
limited to capture the vast range of applications.

It is natural to ask for Nature’s help. After all, quantum mechanics
and thermal noise are supposed to be truly random. We consulted
with a wonderful group of physicists who wanted to put a huge sup-
ply of good random bits on a disk at the end of their book.’ Here is
what they wound up doing. They started with “electrical noise” mea-
sured via the delay times in a leaky capacitor. This generated a long
series of random binary digits. Testing showed that these were not so
random. You could see periodic fluctuations, which were traced to
the 24-hour variations in the power supply! A thousand such strings
were generated. They were combined into one string by taking the
sum (mod 2) of the thousand binary digits in each position. This final

string was then scrambled using the data encryption standard. These
were the final digits used.

148 CHAPTER 8

A host of other techniques have been proposed. These range from
using the quantum mechanical fluctuations in the clicks of a Geiger
counter to using a lava lamp. Such schemes can be combined with
each other and with the deterministic mathematical generators de-
scribed before. There are no theoretical guarantees, and it all seems
terribly ad hoc for such an important enterprise.

One hopeful development is the use of the logic of complexity
theory, as in the scheme of Blum and Michali.f These authors offer a
generator with the following property: if it fails any polynomial time
test, then there is an explicit way to factor that is much faster than
any known method. (Thus, if factoring is hard, our numbers are
secure. But, of course, if factoring can be done efficiently, all bets
are off) This is close in spirit to the algorithmic complexity accounts
treated subsequently in this chapter.

We conclude this practical section with some practical advice on
the use of random number generators:

Use at least two generators and compare results. (We recommend
Mersenne Twister and one of the generators offered in Numeri-
cal Recipes.)

Put in a problem with a theoretically known answer to run along
with the other simulations.

Think of using random number generators like driving a car. Done
with care, it is relatively safe and useful.

ALGORITHMIC RANDOMNESS

The algorithmic theory of randomness, our eighth great idea, reached
its modern form with Per Martin-Lofs 1966 “The Definition of Ran-
dom Sequences.” The concept of an objectively random sequence—
one that is perfectly random—is made precise using the theory of
computation.

As we saw in chapter 4, the problem that the algorithmic theory
of randomness solves was put forward by Richard von Mises in 1919.
Von Mises wanted to ground the application of probability to real-
ity by putting forward an idealized mathematical model of random

ALGORITHMIC RANDOMNESS 149

phenomena. We can see this as an attempt to sidestep the fallacies that
small-probability events don’t happen. Instead of starting with the ran-
dom process of coin flipping and arguing that it is “morally certain”
that the resulting random sequence would have certain properties,
von Mises wants to give the theory of a random sequence directly.
Let’s recall where we left his program: (1) A random sequence of
0s and 1s should have a limiting relative frequency, and (2) limiting
relative frequency should be the same for any infinite subsequence se-
lected out by an admissible place-selection function. (Admissible is

left to be defined.) For example, consider the sequence of alternating
1s and Os:

101010101010101010101010101010101010

The l‘lmltlng relative frequency of 1s is 1. But the place-selection
function that selects odd members of the sequence gives

1111111111111t ...,
and that which selects even members gives
0000000000000000000000000000000000000s . . .

for limiting relative frequencies of 1 and 0, respectively.

Do von Mises random sequences exist? That depends on the class of
admissible place-selection functions. Too few place-selection functions
give patently nonrandom sequences. For an extreme example, suppose

we have just the preceding two place-selection functions. Then the
sequence

11001100110011001100 . . .

v?'ould count as random, since each of the two place-selection func-
tions selects a sequence

1010101010101010 . . .,

Wth}'l has a limiting frequency 1, just as the original sequence. (Notice
that in these examples, the limiting relative frequency of 1s is ap-
proached from above, e.g., 1. 1,213 14)

But.you can easily think of an additional place-selection function
that will change the relative frequency, for instance, pick every fourth

150 CHAPTER 8

entry. And you could then easily construct a sequence that is random
according to the expanded class of place selections.

This raises a general question. What if there are a lot of place-
selection functions? Can we always cook up a sequence that is ran-
dom according to all of them? The answer depends on just what you
mean by “a lot.”

Critics of von Mises® were quick to point out that if a// functions,
in the set-theoretic sense, are included, then there are simply no ran-
dom sequences. Abraham Wald’ (who thought of functions not as sets
but rather as rules that could be explicitly described) proved that given
any countably infinite set of place-selection functions, one can in-
deed cook up von Mises random sequences relative to that class of
place-selection functions. The question was left hanging as to whether
there was some natural set of functions to use.

An answer was suggested by the theory of computability, but this
was possible only after that theory had been developed by Turing,
Godel, Church, and Kleene in the 1930s. The idea of applying com-
putability to von Mises’ definition of a random sequence was due to
Alonzo Church in 1940.°

Church suggested taking the admissible place selection functions
as the computable ones—ones that could be implemented by a Tur-
ing machine.

This seemed like a natural choice, and since there are a count-
able number of Turing machines and a noncountable number of
sequences, there are plenty of sequences that are random in this
sense.

Unfortunately, the definition has a flaw. Von Mises-Church ran-
dom sequences lack some of the properties that they should have. In
particular, some sequences that are random in this sense approach
their limiting relative frequency from one side. This means that they
are vulnerable to a gambling strategy. Von Mises had considered the
impossibility of a successful gambling system the sine qua non ofa
random sequence:

By generalizing the experience of the gambling banks, deducing
from it the Principle of the Impossibility of a Gambling System,

ALGORITHMIC RANDOMNESS 151

and including this principle in the foundation of the theory of
probability, we proceed in the same way as the physicists did in
the case of the (conservation of) energy principle."

Such violating sequences could hardly be taken as paradigms for out-
comes of fair coin flips.

In a deeper sense, Church’s idea of using computability to define
randomness was correct. The problem was the way in which it was
used. In fact, the vulnerability to betting systems has nothing to do
with computability. Ville, in 1939,"? showed that for any countable set
of place-selection functions, there is a von Mises random sequence in
which relative frequency of H is 1, but for all but a finite number of
initial segments, the relative frequency of H is not less than 1. (Like
our previous examples: 10101010 . . . and 110011001100. . . . In fact,
the random sequences constructed by Wald to prove the consistency
of von Mises’ definition all had this property.) The set of place-
selection functions proposed by Church is countable, so it inherits
the problem.

The source of the problem is not the idea of using computability.
Rather, von Mises’ idea of defining randomness by means of place-
selection functions alone appears to be defective.

Church-von Mises randomness requires random sequences to pass
only one sort of test for randomness. Sequences can pass this test and
fail others. We want random sequences to pass all tests of randomness,
with tests being computationally implemented.

Per Martin-Lof found how to do this in 1966." We shall see that two
other, apparently different, ways of incorporating computability in a
definition of randomness gave definitions that turned out equivalent
to that given by Martin-Lof.

COMPUTABILITY

If you know how to program in any computer language, you already
know what computability is. They all allow you to compute the same
functions, although the required program may be shorter in some

152 CHAPTER 8

languages than others. Nevertheless, we include a brief account of
the birth of computability theory because it provides a case study in
the robust mathematical explication of a philosophical notion.

What is a computation? It is a philosophical question that goes back
at least to Hobbes and Leibniz. Hobbes maintained that all thought
was a kind of calculation—an idea that had a second life in the arti-
ficial intelligence community in the late twentieth century. Leibniz
envisioned a universal formal language of thought and a system of
rules of valid inferences, which together reduce any truth step by step
to an identity. Empirical truths would require an infinite number of
steps, recapitulating God’s reasoning in deciding whether to create this
world rather than another. But mathematical truths required only
a finite number of steps, so in principle any mathematical question
could be settled by logical analysis. To this end Leibniz worked both
on formal logic and on the invention and construction of a calculat-
ing machine.

Leibniz’ program, sans theology, lived into the twentieth century
in the views of Bertrand Russell and David Hilbert. Russell held that
all mathematics was reducible to logic. Hilbert thought that every
mathematical problem could be decided. Hilbert put a sharp-enough
point on the problem of computation to motivate its solution, in his
statement of the Entscheidungsproblem: “Is there an algorithm that
takes as input a mathematical statement and outputs 1 if it is true and
0 if it is not?” Hilbert and Ackermann (in 1928)" specifically ask the
question for first-order logic (logic with individuals, predicates, and
quantifiers a// and some over individual variables): “The Entscheidungs-
problem is solved when we know a procedure that allows for any given
logical expression to decide by finitely many operations its validity or
satisfiability.” Using ideas pioneered by Kurt Godel, a negative answer
was found almost simultaneously by Alonzo Church and by Alan
Turing. Leibniz was wrong!

The analysis required, at the onset, a precise theory of computation.
A number of rather different ideas were put forward.

TURING COMPUTABILITY

Computers, at the beginning of the twentieth century, were people. They
sat at desks and carried out computations according to instructions,

ALGORITHMIC RANDOMNESS 153

using paper and pencil. Alan Turing gave an abstract version of this
process allowing unlimited paper and thus produced the very simple
and intuitive notion of a Turing machine. Think of the pieces of paper
available for computation strung together as a tape, infinite in both
directions. Each piece of paper is called a cell of the tape. At any time,
the head of the machine is over some cell, scanning what is written in
the cell—which can either be a 0, 1 or B (blank). There is a special cell
designated as the starting cell. There is a finite set of internal states,
including a special starting state. Depending on the symbol scanned
and the internal state of the machine, the machine performs an opera-
tion, either

Write 0, 1, or B in the cell it is scanning,.
Move one cell to the left or to the right.

Alan Turing

When the action is taken, the machine takes on a (possibly) new
state. Thus the dynamics of the machine in discrete time is character-
ized by a set of quadruples:

<current state, symbol scanned, operation, new state>,

There are no two quadruples with the same initial pair; the dynamics
is deterministic. If the machine is in a state, scanning a symbol, such

154 CHAPTER 8

that there is no corresponding quadruple in its instruction set, the
machine balts.

Here is an example. The machine starts with an empty tape, full of
blanks. It is in its start state, which we will call S. It prints a zero and
enters state S,. This is accomplished by the quadruple

<S4, B, 0, S,>.

Now it is in state S, scanning the 0 that it just printed. The following
instruction tells it to move to the right one cell and assume a new
state, S,:

<S5, 0, R, S,>.

Now it is again scanning a blank, but in state S,. The next instruction
tells it to print a 1 in that blank and assume state 3:

<S,,B, 1, S;>.

It is now in state S, scanning a 1. Our final instruction tells it to
move to the right and go back to state S,,.

<S;, 1, R, Sp>-

It is now in state S,, scanning a blank, just as it started; these four
instructions define a Turing machine that prints out the infinite
sequence

01010101010101. . . .

Everything is finite about the machine (states, symbols, and instruc-

tion set), with the exception of unlimited tape. For a machine that
computes the value of a function, the tape is assumed to start with the |
head over the leftmost cell of encoded values of the arguments. The

machine halts with the head over the encoded value of a function.
The machine may not halt for certain inputs, and in this case the func-

tion is a partial function.

For validity of first-order logic to be decidable, there would have: to
be a Turing machine that, when input a suitably encoded version
of a formula of first-order logic, would output a 1 if the formula is
valid and a 0 if not. A (nonempty) set is computably enumerable if it

is the range of a total computable function. That is to say that there

ALGORITHMIC RANDOMNESS 155

is a Turing machine that when given inputs 1, 2, 3, . . . would list
the members of the set. Although Godel showed (by his complete-
ness theorem) that the valid formulas of first-order logic are com-
putably enumerable, Turing and Church showed that that validity
is not decidable.” The Entscheidungsproblem for first-order logic is
unsolvable.

Turing did this via another unsolvability result. First, he showed
that it was possible to build a universal Turing machine—one that could
emulate every other Turing machine if fed the appropriate input. Then
he asked whether there was a Turing machine that decides the halt-
ing problem for all Turing machines. Is there, that is to say, a machine
that when fed in the description of an arbitrary machine and an input
for that machine outputs a 1 if the target machine will halt with that
input and a 0 if not? He showed that the supposition that there is a
machine that decides the halting problem leads to a contradiction. If
there were such a machine, it would be possible to construct another
that halts if and only if it doesn’t. This undecidability of the halting
problem leads to a proof of the undecidability of the decision prob-
lem for first-order logic.

RECURSIVE FUNCTIONS

Church took a different route to computability. His first approach was
through his A-calculus, which is the basis for the programming lan-
guage LISP. Later he and his student Stephen Kleene, following the
lead of Godel, used recursive functions.

The primitive recursive functions are gotten from zero, successor, and
projection functions, by closure under composition of functions, and
primitive recursion:

The zero functions are f(x,, . . ., x,) =0.

Successor S(x)=x+1,
Projection I¥(x,, . . . , x;) =x,,.
Composition of fand g,.. . . , g,, (bold x is a vector):

h(x)=flg,(x), . . ., g,(x)).

Primitive recursion from fand g:

156 CHAPTER 8

b{xs 0) =ﬂx)1
h(x, t+1)=g(t, h(x,), x).

The general recursive partial functions are gotten from the primi-
tive recursive functions by closing under a minimization operator,
u, that gives the smallest argument that gives the function a value
of 0, if there is one. Where there isn't, the function is undefined.
That is,

h(x)=puy(g(x,y)=0)

is the smallest solution to the equation g(x, y) =0 if there is one and is
undefined for values x where there is no smallest solution.

Turing proved that the general recursive partial functions are the
Turing computable functions. They are undefined for inputs for
which the machine doesn’t halt. Two rather different ideas lead to the
same place.

PROGRAMING LANGUAGES AGAIN

General recursive functions are also the functions that can be pro-
grammed in any modern computer language (size restrictions removed).
If the programming language is restricted so that only bounded loops
are possible, then it can compute only primitive recursive functions.
With unbounded loops we get only partial functions because the
program may not halt.

A ROBUST EXPLICATION OF COMPUTABILITY

All sorts of other approaches, including Markov algorithms,* Church’s
A-calculus, much fancier Turing machines and register machines,
computers with random access memory, and so forth, have been
shown to lead to the same class of computable functions. This lends
confidence to the intuition that this is the “right” notion of comput-
ability. In 1946 Kurt Godel wrote, “ . . with this concept one has for
the first time succeeded in giving an absolute notion to an interest-
ing epistemological notion, i.e., one not depending on the formalism

chosen.””

ALGORITHMIC RANDOMNESS 157

Kurt Godel

RANDOMNESS

Since Church-von Mises randomness proved inadequate, Martin-Lof
took a different approach. One could define random sequences by
throwing out “atypical” classes—null classes—that were given prob-
ability 0 by a model of flipping a fair coin. The immediate problem is
that each individual sequence has probability 0. Here computability
comes to the rescue. We throw out only null sets that can be identi-
fied by a Turing machine. Since there are a countable number of Tur-
ing machines, throwing out all these null sets leaves a set of “typical”
random sequences with probability measure one. (This again can be
regarded as a way of avoiding the absurdities, discussed in chapter 4,
of a literal application of Cournot’s principle.)

The nonrandom sequences can be thought of as those failing
more and more stringent statistical tests. Suppose we see reports of
coin tossing:

010101.
It is a little suspicious. Suppose the sequence continues:
0101010101010101010101010.

That is a lot more suspicious. It is a lot less likely that fair coin flips
should produce this sequence. (All the practical tests of computer
programs to generate random numbers, with which we began this

158 CHAPTER 8

chapter, are of this character. They ask, in different ways, how
likely it is that a sequence of coin flips could have produced this
sequence.) Martin-Lof tests of randomness are a computable imple-
mentation of increasingly stringent tests of randomness. Here is
how it goes.

Consider the set of infinite sequences of zeros and ones that con-
tinues some finite initial segment. These are called cylinder sets. Con-
sidered as sequences of tosses of a fair coin, any set corresponding
to an initial segment of length # has probability (4)". A countable
union of disjoint cylinder sets has a probability that is the sum of the
probabilities of those sets. '

Martin-Lof uses computability twice:

1. We restrict our attention to the case of unions of computably
enumerable sequences of cylinder sets. That is, one can have a
Turing machine that prints out characterizations of these, one
after another. Call these the effective sets.

2. Less and less likely effective sets are intuitively less and less
typical of a random sequence. One hundred alternations of
heads and tails are quite suspicious. We can use a nested sequence
of such sets that are less and less probable to approximate
a definitely nonrandom set. That is, we consider a sequence
U,, ...such that U,,, is a subset of U,, and the probability of
U, is at most (%)". We require that this sequence be computably
enumerable. Such a sequence is a Martin-Lof test. It enumerates
more and more stringent tests.

A set that is in the intersection of such a sequence is a constructive
nullset. It fails the Martin-Lof test of randomness. A Martin-Lof ran-
dom sequence is then defined as one that passes all the tests—one
that is in no constructive null set.”

We can illustrate this by showing how our infinite sequence ot al-
ternating Os and 1s fails to be random. The reasoning applies equally
well to any computably enumerable sequence. Consider a cylinder set
determined by the first n members of the sequence. This is an espe-
cially simple effective set.

The sequence of all cylinder sets determined by longer and longer
initial segments of our original sequence:

ALGORITHMIC RANDOMNESS 159

all continuations of 0,

all continuations of 01,
all continuations of 010,
all continuations of 0101,

and so on, is thus a Martin-Lof test. The intersection of these cylin-
der sets is a Martin-Lof nullset whose only member is our original
sequence, so it is not random.

There are a countable number of constructive nullsets, and each has
probability zero, so the probability that a sequence is Martin-Lof
random is equal to 1. Martin-Lof shows that each sequence that is
random in his sense has a limiting relative frequency—a property
that von Mises had to postulate separately for Kollektivs. This extends
and unifies the connection between relative frequency and chance.

COMPUTABLE MARTINGALES

We have seen that von Mises considered the impossibility of a
successful gambling system essential to the definition of a random
sequence. This was his justification of the use of place-selection
functions in his definition of randomness. You should not be able to
make fair bets on a subsequence of a random sequence in a system-
atic way and make money. But Jean Ville had shown that the defi-
nition in terms of place selection is too restrictive. Some sequences
that are random in the sense of Mises-Church are vulnerable to a
gambling system—Dbut not one so simple as to rely on computable place
selection.

The idea of a gambling system for a sequence is made precise in the
notion of a martingale. Suppose that you start with unit capital. You
put some proportion of your capital in a bet that the first member of
the sequence is a 1 or 0. If you stake everything on 1 and it is 1, you win
and your capital is now doubled. Now you proceed, allocating propor-
tions of your current stake on bets on the next member according to
a rule that can consider the whole history of the sequence up to the
point of the bet. The gambling strategy succeeds against a sequence if
your stake grows to infinity.

Instead of explicitly writing down the strategy, the martingale can
be characterized by the stake in hand at every point in the sequence.

160 CHAPTER 8

So viewed, a martingale is a function, CAP, from initial segments to
nonnegative reals, such that

CAP(s) =1 [CAP(s followed by 0) + CAP(s followed by 1)]

since the odds are fair. A martingale succeeds on a sequence if CAP
goes to infinity in the limit.

For example, consider a betting strategy that puts all the capital
on 1 if the last event is 0 and all the capital on 0 if the last event is
1. The resulting capital function is a martingale. It succeeds on the
sequence

010101. . ..

It does not succeed on 00110011. . . . The strategy immediately goes
bust on this sequence; CAP(00) =0. But another martingale will suc-
ceed on this sequence.

It remains to impose computability constraints. The martingale is
required to be computably enumerable. (The martingale is, in general,
a function to real numbers, so computability is imposed by approxi-
mation. It is said to be computably enumerable if it is lefl-computably
enumerable. That is to say, it is approximable from below by rational-
valued functions.) Then one can define a random sequence in terms
of impossibility of a gambling system. A sequence is random if no
computably enumerable sequence succeeds in it. In 1971 Schnorr®
proved that a sequence is random in this sense if and only if it is
Martin-Lof random.

KOLMOGOROV COMPLEXITY

In the 1960s Kolmogorov returned to the foundations of probability
from a new standpoint.’ A finite sequence of 1000 alternating 0s
and 1s is algorithmically compressible in that one can write a short pro-
gram to generate it. This is because of its simple structure. Absence
of structure is a way to define randomness. One can then measure
randomness of a finite sequence, relative to some universal Turing
machine, by measuring the length of the shortest program that will
generate it. The shorter the program, the less random the sequence.
Kolmogorov complexity was introduced independently by Gregory
Chaitin in 1966.”

ALGORITHMIC RANDOMNESS 161

But the degree of randomness, thus defined, depends on the uni-
versal Turing machine (or the programming language) chosen. The
dependence of the result on the universal Turing machine is limited,
however, since any such machine can be programmed to simulate any
other. The length of the simulation program is a constant, and length
of shortest programs to generate a sequence must agree up to this con-
stant. The differences may wash out at infinity (if everything goes
well), but plausible application to finite sequences appears to depend
on a plausible natural choice of a universal Turing machine.

In this approach to randomness or computational complexity, Kol-
mogorov and Chaitin were anticipated by Ray Solomonoft.** Solo-
monoff was partly inspired by a class on inductive logic taught by
the philosopher Rudolf Carnap, which he sat in as an undergraduate
at the University of Chicago. He thought that Carnap’s project was
good but that he was going about it in the wrong way. Solomonoft’s
idea was to use computational complexity in the construction of a
universal prior.*

Since computational complexity depends on the choice of a Tur-
ing machine, or programing language, used to measure it, so does the
universal prior. Some discussions try to slide by this by noting that
one universal Turing machine can emulate any other, given the ap-
propriate code. But the appropriate code may be long, and the difter-
ence in complexity may be large. Solomonoff, however, saw this not
as a problem to be minimized, but just as a fact of life. The choice is
subjective; it is a judgment based on our general experience. It is the
choice of a prior, which is then updated by experimental results.

Solomonoft is unabashedly a subjective Bayesian:

Subjectivity in science has usually been regarded as Evil—that
is something that does not occur in “true science” that if it does
occur, the results are not “science” at all. The great statistician,
R. A. Fisher, was of this opinion. He wanted to make statistics a
“true science” free of all the subjectivity that had been so much
a part of its history.

I feel that Fisher was seriously wrong in this matter. . . .

*The idea is spectacularly successful, provided that God uses a Turing machine to generate
the universe.

162 CHAPTER 8

In ALP (algorithmic probability), this subjectivity occurs in the
choice of “reference”—a universal computer or universal com-
puter language.”

Ray Solomonoft

It seems natural to apply ideas of computational complexity to
von Mises’ problem of defining a Kollektiv by passing to the limit. A
Kollektiv would be an infinite sequence with incompressible initial
segments. Applying computational complexity, as introduced above—
plain Kolmogorov computational complexity—infinite random se-
quences do not exist!

Although the initial attempt to define a random infinite sequence
in terms of Kolmogorov complexity failed, this turned out to be be-
cause the issue was not framed in exactly the right way. That is be-
cause a program (input) for a universal Turing machine contains both
information about the sequence to be computed and also informa-
tion about the length of the program. For the algorithmic complex-
ity of the sequence, we are interested only in information about the
sequence being computed. This can be achieved by restricting atten-
tion to a special kind of universal Turing machine—a prefix-free uni-
versal Turing machine. We measure the prefix-free complexity of a
sequence K using a prefix-free universal Turing machine.* **

ALGORITHMIC RANDOMNESS 163

Then, at infinity, everything works. An infinite sequence is algo-
rithmically random if there is a constant ¢ such that complexity K
of every initial segment of length # is greater than or equal to n-c.
Algorithmically random infinite sequences now exist, and Schnorr
(1971) also proved that these random sequences also coincide with the
Martin-Lof random sequences.

There is thus one very strong and reasonably robust concept of al-
gorithmic randomness. As Martin-Lof remarked, it gives a correct
definition of von-Mises’ idea of a Kollektiv. The frequentist ideas of
von Mises are not so opposed to the measure-theoretic framework of
Kolmogorov after all. Flipping a fair coin infinitely often produces a Kolle-
ktiv with probability 1.

VARIATIONS ON RANDOMNESS

If randomness is based on computation, then variations on random-
ness can be based on different computational notions. The theory can
be pushed into higher realms of abstraction by equipping a Turing ma-
chine with an oracle. An oracle is a black box that will answer any
of a certain class of questions that the Turing machine can put to it
at any point in a computation. One can consider a universal Turing
machine equipped with an oracle that decides the halting problem for
any Turing machine. Such a machine is computationally more pow-
erful than any Turing machine. Of course, such a machine does not
decide the halting problem for Turing machines with such an oracle
because that would lead to a contradiction.

One can then consider a super-oracle that decides the halting prob-
lem for these machines, and so forth, creating a hierarchy of compu-
tationally more powerful machines. This leads to a hierarchy of more
and more stringent criteria for a random sequences, with Martin-Lof
randomness being 1-randomness, the same notion with a Turing ma-
chine equipped with an oracle deciding the halting problem being
2-randomness, and so on. The class of N+1 random sequences is
strictly contained in the class of N-random sequences.

In the other direction, weaker kinds of randomness can be got-
ten by limiting the kind of computation used to test for randomness.

164 CHAPTER 8

This can be done in various ways. Schnorr proposed computable
tests rather than computably enumerable tests, which gives a weaker
notion of randomness. There is a theory of P-randomness using comput-
ability in polynomial time that parallels the theory discussed above.
P-random sequences still possess many of the features one would want
from a random sequence. Limiting computational resources in vari-
ous ways gives weaker notions of randomness. If we are willing to fix
on a programing language that we find natural, then Kolmogorov
complexity gives us a usable measure for finite sequences.

SUMMING UP

The quest for the notion of an objectively random sequence had its
origins in von Mises’ attempt to formulate a pure frequency theory of
probability based on an objectively disordered random sequence—
his Kollektiv. This, most of us would agree, is a failed foundational
program. The modern theory of algorithmic randomness proceeds
within the Kolmogorov framework rather than being an alternative.

Now that Martin-Lof and others have developed a satisfactory con-
cept of such a sequence via computability theory, we can ask what
remains of von Mises” program. Returning to Borel (chapter §), we
can now say that Bernoulli trials—coin flipping—produce a von Mises
Kollektiv with probability one. Then, due to de Finetti (chapter 7),
exchangeable degrees of belief are equivalent to belief in a von Mises
Kollektiv with uncertain frequency.

	Chance-1
	Chance-2
	Chance-3
	Chance-4
	Chance-5
	Chance-6
	Chance-7
	Chance-8
	Chance-9
	Chance-10
	Chance-11

