1 What Is an Algorithm?

aus

Ed Finn,

What algorithms want. Imagination in the age of computing.
Cambridge: MIT Press 2017

If we want to live with the machine, we must understand the machine, we must not
worship the machine.

Norbert Wiener'
Rise of the Culture Machines

Sometime in the late 2000s, our relationship with computers changed. We
began carrying devices around in our pockets, peering at them at the dinner
table, muttering quietly to them in the corner. We stopped thinking about
hardware and started thinking about apps and services. We have come
not just to use but to trust computational systems that tell us where to go,
whom to date, and what to think about (to name just a few examples).
With every click, every terms of service agreement, we buy into the idea
that big data, ubiquitous sensors, and various forms of machine learning
can model and beneficially regulate all kinds of complex systems, from
picking songs to predicting crime. Along the way, an old word has become
new again: the algorithm. Either overlooked or overhyped, the élgorithm is
rarely taken seriously as a key term in the cultural work that computers do
for us. This book takes that word apart and puts it back together again,
showing how algorithms function as culture machines that we need to
learn how to read and understand.

Algorithms are everywhere. They already dominate the stock market,
compose music, drive cars, write news articles, and author long mathemati-
cal proofs—and their powers of creative authorship are just beginning
to take shape. Corporations jealously guard the black boxes running
these assemblages of data and process. Even the engineers behind some
of the most successful and ublqultous algorithmic systems in the

16 Chapter 1

world—executives at Google and Netflix, for example—admit that they
understand only some of the behaviors their systems exhibit. But their rhet-
oric is still transcendent and emancipatory, striking many of the same
techno-utopian notes as the mythos of code as magic when they equate
computation with transformational justice and freedom. The theology
of computation that Ian Bogost identified is a faith militant, bringing the
gospel of big data and disruption to huge swaths of society.

This is the context in which we use algorithms today: as pieces of quotid-
ian technical magic that we entrust with booking vacations, suggesting
p-otential mates, evaluating standardized test essays, and performing many
other kinds of cultural work. Wall Street traders give their financial “algos”
names like Ambush and Raider, yet they often have no idea how their
money-making black boxes work.?> As a keyword in the spirit of cultural
critic Raymond Williams,* the word algorithm frequently encompasses a
range of computational processes including close surveillance of user
behaviors, “big data” aggregation of the resulting information, analytics
engines that combine multiple forms of statistical calculation to parse that
data, and finally a set of human-facing actions, recommendations, and
interfaces that generally reflect only a small part of the cultural processing
going on behind the scenes. Computation comes to have a kind of presence
in the world, becoming a “thing” that both obscures and highlights par-
ticular forms of what Wendy Hui Kyong Chun calls “programmability,” a
notion we will return to in the guise of computationalism below.*

It is precisely this protean nature of computation that both troubles and
attracts us. At some times computational systems appear to conform to that
standard of discrete “thingness,” like the me of Sumerian myth or a shiny
application button on a smartphone screen. At other moments they are
much harder to distinguish from broader cultural environments: to what
extent are spell-check programs changing diction and grammatical choices
through their billions of subtle corrections, and how do we disentangle the
assemblage of code, dictionaries, and grammars that underlie them? While
the cultural effects and affects of computation are complex, these systems
function in the world through instruments designed and implemented by
human beings. In order to establish a critical frame for reading cultural
computation, we have to begin with those instruments, jammed together
in the humble vessel of the algorithm.

What Is an Algorithm? 17

Our look at Snow Crash revealed the layers of magic, “sourcery,” and
structured belief that underpin the facade of the algorithm in culture today.
Now we turn to the engineers and computer scientists who implement
computational systems. Rooted in computer science, this version of the
algorithm relies on the history of mathematics. An algorithm is a recipe, an
instruction set, a sequence of tasks to achieve a particular calculation
or result, like the steps needed to calculate a square root or tabulate the
Fibonacci sequence. The word itself derives from Abii ‘Abdallah Muhammad
ibn Misa al-Khwarizmi, the famed ninth-century CE mathematicia;n (from
whose name algebra is also derived). Algorismus was originally the process
for calculating Hindu-Arabic numerals. Via al-Kwarizmi, the algorithm
was associated with the revolutionary concepts of positional notation, the
decimal point, and zero.

As the word gained currency in the centuries that followed, “algorithm”
came to describe any set of mathematical instructions for manipulating
data or reasoning through a problem. The Babylonians used some of the
first mathematical algorithms to derive square roots and factor numbers.*
Euclid devised an algorithm for taking two numbers and finding the great-
est common divisor they share. Throughout this evolution, the algorithm
retained an essential feature that will soon become central to the story: it
just works. That is to say, an algorithm reliably delivers an expected result
within a finite amount of time (except, perhaps, for those edge cases that
fascinate mathematicians and annoy engineers).

Historian Nathan Ensmenger recounts how the academic discipline of
computer science coalesced only after its advocates embraced the concept
of the algorithm, with one of the field’s founders, Donald Knuth, tracing
the field’s origins to al-Khwarizmi in his seminal textbook The Art of
Computer Programming.® The algorithm was an ideal object of study, both
easily grasped and endlessly puzzling:

By suggesting that the algorithm was as fundamental to the technical activity
of computing as Sir Isaac Newton’s laws of motion were to physics, Knuth and his
fellow computer scientists could claim full fellowship with the larger community of

scientists.”

And yet, as mathematician Yiannis Moschovakis points out, Knuth'’s argu-
ment about what algorithms actually are is an extremely rare instance
where the question is foregrounded.® For computer scientists the term

18 Chapter 1

remains more of an intuitive, unexamined notion than a delineated logical
concept gfdunded in a mathematical theory of computation.

" Thanks in large part to Knuth, the algorithm today is a fundamental
concept in computer science, an intellectual keystone typically covered in
the introductory Algorithms and Data Structures course for undergraduate
majors. Algorithms represent repeatable, practical solutions to problems
like factoring a number into its smallest prime number components or
finding the most efficient pathway through a network. The major focus
for contemporary algorithmic research is not whether they work but how
efficiently, and with what tradeoffs in terms of CPU cycles, memory, and
accuracy.

We can distill this pragmatic approach to algorithms down to a single
PowerPoint slide. Robert Sedgewick, a leading researcher on computa-
tional algorithms, also ha];;penecl to teach the version of Algorithms and
Data Structures that I took as an undergraduate; he calls the algorithm a
“method for solving a problem” in his widely circulated course materials.”
This is what 1 term the pragmatist’s definition: an engineer’s notion of algo-
rithms geared toward d;fining problems and solutions. The pragmatist’s
definition grounds its truth claim in utility: algorithms are fit for ai pur-
pose, illuminating pathways between problems and solutions. This is the
critical frame that dominates the breakout rooms and workstations of
engineers at Google, Apple, Amazon, and other industry giants. As Google
describes them: “Algorithms are the computer processes and formulas that
take your questions and turn them into answers.”'’ For many engineers
and technologists, algorithms are quite simply the work, the medium of
|their labor.
 The pragmatic definition lays bare the essential politics of the algorith.m.,
its transparent complicity in the ideology of instrumental reason that digi-
tal culture scholar David Golumbia calls out in his critique of computa-
tion.!"" Of course this is what algorithms do: they are methods, inheriting
the inductive tradition of the scientific method and engineering from
Archimedes to Vannevar Bush. They solve problems that have been identi-
fied as such by the engineers and entrepreneurs who develop and optimize
the code. But such implementations are never just code: a method for solv-
ing a problem inevitably involves all sorts of technical and intellectual

inferences, interventions, and filters.

What Is an Algorithm? 19

As an example, consider the classic computer science problem of the
traveling salesman: how can one calculate an efficient route through a
geography of destinations at various distances from one another? The
question has many real-world analogs, such as routing UPS drivers, and
indeed that company has invested hundreds of millions of dollars in a
1,000-page algorithm called ORION that bases its decisions in part on trav-
eling salesman heuristics.”” And yet the traveling salesman problem imag-
ines each destination as an identical point on a graph, while UPS drop-offs
vary greatly in the amount of time they take to complete (hauling a heavy
package up with a handcart, say, or avoiding the owner’s terrier). ORION's
algorithmic model of the universe must balance between particular compu-
tational abstractions (each stop is a featureless, fungible point), the lived
experience and feedback of human drivers, and the data the company has
gathered about the state of the world’s stop signs, turn lanes, and so on. The
computer science question of optimizing paths through a network must
share the computational stage with the autonomy of drivers, the imposi-
tion of quantified tracking on micro-logistical decisions like whether to
make a right or left turn, and the unexpected interventions of other com-
plex human systems, from traffic jams to pets.

ORION and its 1,000-page “solution” to this tangled problem is, of
course, a process or system in continued evolution rather than an elegant
equation for the balletic coordination of brown trucks. Its equations and
computational models of human behavior are just one example among
millions of algorithms attempting to regularize and optimize complex cul-
tural systems. The pragmatist’s definition achieves clarity by constructing
an edifice (a cathedral) of tacit knowledge, much of it layered in systems
of abstraction like the traveling salesman problem. At a certain level of
cultural success, these systems start to create their own realities as well:
various players in the system begin to alter their behavior in ways that
short-circuit the system’s assumptions. Internet discussion boards catalog
complaints about delivery drivers who do not bother to knock and instead
leave door tags claiming that the resident was not at home. These short-
cuts work precisely because they are invisible to systems like ORION, allow-
ing the driver to save valuable seconds and perhaps catch up on all those

other metrics that are being tracked on a hectic day when the schedule
starts to slip.

20 Chapter 1

Many of the most powerful corporations in existence today are
essentially cultural wrappers for sophisticated algorithms, as we will see in
the following chapters. Google exemplifies a company, indeed an entire
worldview, built on an algorithm, PageRank. Amazon’s transformational
algorithm involved not just computation but logistics, finding ways to out-
source, outmaneuver, and outsell traditional booksellers (and later, sellers
of almost every kind of consumer product). Facebook developed the world’s
most successful social algorithm for putting people in contact with one
another. These are just a few examples of powerful, pragmatic, lucrative
algorithms that are constantly updated and modified to cope with the
messy cultural spaces they attempt to compute.

We live, for the most part, in a world built by algorithmic pragmatists.
Indeed, the ambition and scale of corporate operations like Google means
that their definitions of algorithms—what the problems are, and how to
solve them—can profoundly change the world. Their variations of pragma-
tism then inspire elaborate responses and counter-solutions, or what com-
munication researcher Tarleton Gillespie calls the “tacit negotiation” we
perform to adapt ourselves to algorithmic systems: we enunciate differently
when speaking to machines, use hashtags to make updates more machine-
readable, and describe our work in search engine-friendly terms."’

The tacit assumptions lurking beneath the pragmatist’s definition are
becoming harder and harder to ignore. The apparent transparency and sim-
plicity of computational systems are leading many to see them as vehicles
for unbiased decision-making. Companies like UpStart and ZestFinance
view computation as a way to judge financial reliability and make loans to
people who fail more traditional algorithmic tests of credit-worthiness, like
credit scores.' These systems essentially deploy algorithms to counter the
bias of other algorithms, or more cynically to identify business opportuni-
ties missed by others. The companies behind these systems are relatively
unusual, however, in acknowledging the ideological framing of their
business plans, and explicitly addressing how their systems attempt to
judge “character.”

But if these are reflexive counter-algorithms designed to capitalize on
systemic inequities, they are responding to broader cultural systems that
typically lack such awareness. The computational turn means that many
algorithms now reconstruct and efface legal, ethical, and perceived reality
according to mathematical rules and implicit assumptions that are shielded

What Is an Algorithm? 21

from public view. As legal ethicist Frank Pasquale writes about algorithms
for evaluating job candidates:

Automated systems claim to rate all individuals the same way, thus averting dis-
crimination. They may ensure some bosses no longer base hiring and firing deci-
sions on hunches, impressions, or prejudices. But software engineers construct
ttle. datasets mined by scoring systems; they define the pafameters of data-minin g
analyses; they create the clusters, links, and decision trees applied; they generaté
the predictive models applied. Human biases and values are embedded into each
and every step of development. Computerization may simply drive discrimination
upstream.'®

As algorithms move deeper into cultural space, the pragmatic definition
gets scrutinized more closely according to critical frames that reject the
engineering rubric of problem and solution, as Pasquale, Golumbia, and a
growing number of algorithmic ethics scholars have argued. The cathedral
of abstractions and embedded systems that allow the pragmatic algorithms
of the world to flourish can be followed down to its foundations in sym-
bolic logic, computational theory, and cybernetics, where we find a curious
thing among that collection of rational ideas: desire. o

From Computation to Desire

What are the truth claims underiying the engineer’s problems and solu-
tions, or the philosophy undergirding the technological magic of sourcery?
They depend on the protected space of computation, the logical, proce-
dural, immaterial space where memory and process work according to very
different rules from material culture. The pragmatist’s approach gestures
toward, and often depends on, a deeper philosophical claim about the
nature of the universe. We need to understand that claim as the grounding
for the notion of “effective computability,” a transformational concept in
computer science that fuels algorithmic evangelism today. In her book My
Mother Was a Computer, media theorist N. Katherine Hayles labels this phil-
osophical claim the Regime of Computation.'® This is another term for
what I sometimes refer to as the age of the algorithm: the era dominated by
the figure of the algorithm as an ontological structure for understanding
the universe. We can also think of this as the “computationalist definition,”
which extends the pragmatist’s notion of the algorithm and informs the
core business models of companies like Google and Amazon.

22 . Chapter 1

In its softer version, computationalism argues that algorithms have no
ontological claim to truly describing the world but are highly effective at
solving particular technical problems. The engineers are agnostic about the
universe as a system,; all they care about is accurately modeling certain parts
of it, like the search results that best correspond to certain queries or the
books that users in Spokane, Washington, are likely to order today. As
Pasquale and a host of other digital culture critics from Jaron Lanier to Evg-
eny Morozov have argued, even the implicit claims to efficiency and “good-
enough” rationalism at the heart of the engineer’s definition of algorithms
have a tremendous impact on policy, culture, and the practice of everyday
life, because the compromises and analogies of algorithmic approximations
tend to efface everything that they do not comprehend."”

The expansion of the rhetoric of computation easily bleeds into what

Hayles calls the “hard claim” for computationalism. In this argument algo-
rithms do not merely describe cultural processes with more or less accu-
racy: those processes are themselves computational machines that can
be mathematically duplicated (given enough funding). According to this
logic it is merely a matter of time and applied science before computers
can simulate election outcomes or the future price of stocks to any desired
degree of accuracy. Computer scientist and polymath Stephen Wolfram lays
out the argument in his ambitious twenty-year undertaking, A New Kind
of Science:
The crucial idea that has allowed me to build a unified framework for the new kind
of science that I describe in this book is that just as the rules for any system can be
viewed as corresponding to a program, soO also its behavior can be viewed as corre-
sponding to a computation.'®

Wolfram’s principle of computational equivalence makes the strong
claim that all complex systems are fundamentally computational and, as he
hints in the connections he draws between his work and established fields
like theoretical physics and philosophy, he believes that computationalism
offers “a serious possibility that [a fundamental theory for the universe] can
actually be found.”" This notion that the computational metaphor could
unlock a new paradigm of scientific inquiry carries with it tremendous
implications about the nature of physical systems, social behavior, and con-
sciousness, among other things, and at its most extreme serves as an ideol-
ogy of transcendence for those who seek to use computational systems to
model and understand the universe.

What Is an Algorithm? 23

Citing Wolfram and fellow computer scientists Harold Morowitz and
Edward Fredkin, Hayles traces the emergence of an ideology of universal
computation based on the science of complexity: if the universe is a giant
computer, it is not only efficient but intellectually necessary to develop
computational models for cultural problems like evaluating loan applica-
tions or modeling consciousness. The models may not be perfect now but
they will improve as we use them, because they employ the same computa-
tional building blocks as the system they emulate. On a deeper level, com-
putationalism suggests that our knowledge of computation will answer
many fundamental questions: computation becomes a universal solvent for
problems in the physical sciences, theoretical mathematics, and culture
alike. The quest for knowledge becomes a quest for computation, a herme-
neutics of modeling.

But of course models always compress or shorthand reality. If the anchor
point for the pragmatist’s definition of the algorithm is its indefinable flex-
ibility based on tacit understanding about what counts as a problem and a
solution, the anchor point here is the notion of abstraction. The argument
for computationalism begins with the Universal Turing Machine, mathe-
matician Alan Turing’s breathtaking vision of a computer that can complete
any finite calculation simply by reading and writing to an infinite tape
marked with 1s and Os, moving the tape forward or backward based on the .
current state of the machine. Using just this simple mechanism one could
emulate any kind of computer, from a scientific calculator finding the area
under a curve to a Nintendo moving Mario across a television screen. In
other words, this establishes a computational “ceiling” where any Turing
computer can emulate any other: the instructions may proceed more slowly
or quickly, but are mathematically equivalent.

The Universal Turing Machine is a thought experiment that determines
the bounds of what is computable: Turing and his fellow mathematician
Alonzo Church were both struggling with the boundary problems of math-
ematics. In one framing, posed by mathematician David Hilbert, known as
the Entscheidungsproblem, the question is whether it’s possible to predict
when or if a particular program will halt, ending its calculations with
or without an answer. Their responses to Hilbert, now called the Church-
Turing thesis, define algorithms for theorists in a way that is widely accepted
but ultimately unprovable: a calculation with natural numbers, or what
most of us know as whole numbers, is “effectively computable” (that is,

24 Chapter 1

given enough time and pencils, a human could do it) only if the Universal
Turing Machine can do it. The thesis uses this informal definition to unite
three different rigorous mathematical theses about computation (Turing
machines, Church’s lambda calculus, and mathematician Kurt Godel’s con-
cept of recursive functions), translating their specific mathematical claims
into a more general boundary statement about the limits of computational
abstraction.

In another framing, as David Berlinski argues in his mathematical his-
tory The Advent of the Algorithm, the computability boundary that Turing,
Gédel, and Church were wrestling with was also an investigation into the
deep foundations of mathematical logic.” Godel proved, to general dismay,
that it was impossible for a symbolic logical system to be internally consis-
tent and provable using only statements within the system. The truth claim
or validation of such a system would always depend on some external pre-
sumption or assertion of logical validity: turtles all the way down. Church
grappled with this problem and developed the lambda calculus, a masterful
demonstration of abstraction that served as the philosophical foundation
for numerous programming languages decades after his work.”" As Berlinski
puts it, Turing had “an uncanny and almost unfailing ability to sift through
the work of his time and in the sifting discern the outlines of something far
simpler than the things that other men saw. »22 I other words, he possessed
a genius for abstraction, and his greatest achievement in this regard was the
Turing machine.

Turing’s simple imaginary machine is an elegant mathematical proof for
universal computation, but it is also an ur-algorithm, an abstraction gen-
erator. The mathematical equivalence of Church and Turing’s work quickly
suggested that varying proofs of effective computability (there are now
over thirty) all gesture toward some fundamental universal truth. But every
abstraction has a shadow, a puddled remainder of context and specificity
left behind in the act of lifting some idea to a higher plane of thought. The
Turing machine leaves open the question of what “ effectively computable”
might really mean in material reality, where we leave elegance and infinite
tapes behind. As it has evolved from a thought experiment to a founding
tenet of computationalism (and the blueprint for the computational
revolution of the twentieth and twenty-first centuries), the Church-Turing
thesis has developed a gravitational pull, a tug many feel to organize the
universe according to its logic. The concept of universal computation

What Is an Algorithm? 25

encodes at its heart an intuitive notion of “effective”: achievable in a
finite number of steps, and reaching some kind of desired result. From the
beginning, then, algorithms have encoded a particular kind of abstraction,
the abstraction of the desire for an answer. The spectacular clarity and rigor of
these formative proofs in computation exists in stark contrast to the
remarkably ill-defined way that the term is deployed in the field of com-
puter science and elsewhere.”

This desire encoded in the notion of effectiveness is typically obscured
in the regime of computation, but the role of abstraction is celebrated.
The Universal Turing Machine provides a conceptual platform for
uniting all kinds of computing: algorithms for solving a set of problems in
particle physics might suddenly be useful in genetics; network analysis can
be deployed to analyze and compare books, business networks, and bus
systems. Abstraction itself is one of the most powerful tools the Church-
Turing thesis—and computation in general—gives us, enabling platform-
agnostic software and the many metaphors and visual abstractions we
depend on, like the desktop user interface.

Abstraction is the ladder Wolfram et al. use to climb from particular
computational systems to the notion of universal computation. Many com-
plex systems demonstrate computational features or appear to be comput-
able. If complex systems are themselves computational Turing Machines,
they are therefore equivalent: weather systems, human cognition, and
most provocatively the universe itself.* The grand problems of the cosmos
(the origins thereof, the relationship of time and space) and the less grand
problems of culture (box office returns, intelligent web searching, natural
language processing) are irreducible but also calculable: they are not com-
plicated problems with simple answers but rather simple problems (or rule-
sets) that generate complicated answers. These assumptions open the door
to a mathesis universalis, a language of science that the philosophers Gott-
fried Wilhelm Leibniz, René Descartes, and others presaged as a way to
achieve perfect understanding of the natural world.” This perfect language
would exactly describe the universe through its grammar and vocabulary,
becoming a new kind of rational magic for scientists that would effectively
describe and be the world. '

Effective computability continues to be an alluring, ambiguous term
today, a fault line between the pragmatist and computationalist definition
of algorithms. I think of this as computation’s first seduction, rooted at the

26 Chapter 1

heart of the Church-Turing thesis. It has expanded its sway with the growth
of computing power, linking back to the tap root of rationalism, gradually
becoming a deeper, more romantic mythos of a computational ontology
for the universe. The desire to make the world effectively calculable drives
many of the seminal moments of computer history, from the first ballistics
computers replacing humans in mid-century missile defense to Siri and
the Google search bar.” It is the ideology that underwrites the age of the
algorithm, and its seductive claims about the status of human knowledge
and complex systems in general form the central tension in the relation-
ship between culture and culture machines.

To understand the consequences of effective computability, we need
to follow three interwoven threads as the implications of this idea work
themselves out across disciplines and cultural fields: cybernetics, symbolic
language, and technical cognition.

Thread 1: Embodying the Machine

“Effective computability” is an idea with consequences not just for our con-
ception of humanity’s place in the universe but how we understand bio-
logical, cultural, and social systems. Leibniz’s vision of a mathesis universalis
is seductive because it promises that a single set of intellectual tools can
make all mysteries accessible, from quantum mechanics to the circuits
inside the human brain. After World War 11, a new field emerged to pursue
that promise, struggling to align mathematics and materiality, seeking to
map out direct correlations between computation and the physical and
social sciences. In its heyday cybernetics, as the field was known, was a
sustained intellectual argument about the place of algorithms in material
culture—a debate about the politics of implementing mathematical ideas,
or claiming to find them embodied, in physical and biological systems.
The polymathic mathematician Norbert Wiener published the found-
ing text of this new discipline in 1949, calling it Cybernetics; or Control and
Communication in the Animal and the Machine. Wiener names Leibniz the
patron saint of cybernetics: “The philosophy of Leibniz centers about two
closely related concepts—that of a universal symbolism and that of a cal-
culus of reasoning.”?’ As the book’s title suggests, the aim of cybernetics in
the 1940s and 1950s was to define and implement those two ideas: an
intellectual system that could encompass all scientific fields, and a means

What Is an Algorithm? 27

of quantifying change within that system. Using them, the early cyberne-
ticians sought to forge a synthesis between the nascent fields of computer
science, information theory, physics, and many others (indeed, Wiener
nominated his patron saint in part as the last man to have “full command
of all the intellectual activity of his day”).”® The vehicle for this synthesis
was, intellectually, the field of information theory and the ordering fea-
tures of communication between different individual and collective enti-
ties, and pragmatically, the growing power of mechanical and computational
systems to measure, modulate, and direct such communications.

On a philosophical level, Wiener’s vision of cybernetics depended on
the transition from certainty to probability in the twentieth century.”
The advances of Einsteinian relativity and quantum mechanics suggested
that uncertainty, or indeterminacy, was fundamental to the cosmos and
that observation always affected the system being observed. This marked
the displacement of a particular rationalist ideal of the Enlightenment, the
notion that the universe operated by simple, all-powerful laws that could
be discovered and mastered. Instead, as the growing complexity of math-
ematical physics in the twentieth and twenty-first centuries has revealed,
the closer we look at a physical system, the more important probability
becomes. It is unsettling to abandon the comfortable solidity of a table,
that ancient prop for philosophers of materialism, and replace it with a
probabilistic cloud of atoms. And yet only with probability—more impor-
tant, a language of probability—can we begin to describe our relativistic
universe.

But far more unsettling, and the central thesis of the closely allied field
of information theory, is the notion that probability applies to information
as much as to material reality. By framing information as uncertainty, as
surprise, as unpredicted new data, mathematician Claude Shannon created
a quantifiable measurement of communication.” Shannon’s framework
has informed decades of work in signal processing, cryptography, and sev-
eral other fields, but its starkly limited view of what counts has become a
major influence in contemporary understandings of computational knowl-
edge. This measurement of information is quite different from the common
cultural understanding of knowledge, though it found popular expression
in cybernetics, particularly in Wiener’s general audience book The Human
Use of Human Beings. This is where Wiener lays one of the cornerstones for
the cathedral of computation: “To live effectively is to live with adequate

28 . Chapter 1

information. Thus, communication and control belong to the essence
of man’s inner life, even as they belong to his life in society.”*" In its
limited theoretical sense, information provided a common yardstick for
understanding any kind of organized system; in its broader public sense, it
became the leading edge of computationalism, a method for quantifying
patterns and therefore uniting biophysical and mathematical forms of
complexity.

As Wiener’s quote suggests, the crucial value of information for cyber-
netics was in making decisions.”> Communication and control became the
computational language through which biological systems, social struc-
tures, and physics could be united. As Hayles argues in How We Became
Posthuman, theoretical models of biophysical reality like the early
McCulloch—Pitts Neuron (which the logician Walter Pitts proved to be
computationally equivalent to a Turing machine) allowed cybernetics to
establish correlations between computational and biological processes at
paradigmatic and operational levels and lay claim to being what informat-
ics scholar Geoffrey Bowker calls a “universal discipline.”* Via cybernetics,
information was the banner under which “effective computability”
expanded to vast new territories, first presenting the tantalizing prospect
that Wolfram and others would later reach for as universal computation.™
As early as The Human Use of Human Beings, Wiener popularized these links
between the Turing machine, neural networks, and learning in biological
organisms, work that is now coming to startling life in the stream of
machine learning breakthroughs announced by the Google subsidiary
DeepMind over the past few years.

This is Wiener ascending the ladder of abstraction, positioning cybernet-
ics as a new Liebnitzian mathesis universalis capable of uniting a variety of
fields. Central to this upper ascent is the notion of homeostasis, or the way
that a system responds to feedback to preserve its core patterns and iden-
tity. A bird maintaining altitude in changing winds, a thermostat control-
ling temperature in a room, and the repetition of ancient myths through
the generations are all examples of homeostasis at work. More provoca-
tively, Wiener suggests that homeostasis might be the same thing as iden-
tity or life itself, if “the organism is seen as message. Organism is opposed
to chaos, to disintegration, to death, as message is to noise.”** This line of
argument evolved into the theory of autopoiesis proposed by philosophers
Humberto Maturana and Francisco Varela in the 1970s, the second wave of
cybernetics which adapted the pattern-preservation of homeostasis more

What Is an Algorithm? 29

fully into the context of biological systems. Describing organisms as infor-
mation also suggests the opposite, that information has a will to survive,
that as Stewart Brand famously put it, “information wants to be free.”*®
Like Neal Stephenson’s programmable minds, like the artificial intelli-
gence researchers who seek to model the human brain, this notion of the
organism as message reframes biology (and the human) to exist at least
aspirationally within the boundary of effective computability. Cybernetics
and autopoiesis lead to complexity science and efforts to model these pro-
cesses in simulation. Mathematician John Conway’s game of life, for

Figure 1.1

“This is a Turing Machine implemented in Conway’s Game of Life.” Designed by
Paul Rendell.

30 Chapter 1

example, seeks to model precisely this kind of spontaneous generation of
information, or seemingly living or self-perpetuating patterns, from simple
rule-sets. It, too, has been shown to be mathematically equivalent to a Tur-
ing machine, and indeed mathematician Paul Rendell designed a game of
life that he proved to be Turing-equivalent (figure 1.19:¥

In fact, if we accept the premise of organism as message, of informa-
tional patterns as a central organizing logic for biological life, we inevitably
come to depend on computation as a frame for exploring that premise.
Wiener’s opening gambit of the turn from certainty to probability displaced
but did not eliminate the old Enlightenment goals of universal, consilient
knowledge. That ambition has now turned to building the best model, the
finest simulation of reality’s complex probabilistic processes. Berlinski
observed the same trend in the distinction between analytic and computa-
tional calculus, noting how the discrete modeling of intractable differential
equations allows us to better understand how complex systems operate, but
always at the expense of gaining a temporally and numerically discrete,
approximated view of things.”® The embrace of cybernetic theory has
increasingly meant an embrace of computational simulations of social,
biological, and physical systems as central objects of study.

Hayles traces this plumb line in cybernetics closely in How We Became
Posthuman, arguing that the Macy Conferences, where Wiener and his col-
laborators hammered out the vision for a cybernetic theory, also marked a
concerted effort to erase the embodied nature of information through
abstraction. In the transcripts, letters, and other archival materials stem-
ming from these early conversations, she argues that the synthesizing
ambitions of cybernetics led participants to shy away from considerations
of reflexivity and the complications of embodiment, especially human
embodiment, as they advanced their theory. But, as Hayles puts it, “In the
face of such a powerful dream, it can be a shock to remember that for infor-
mation to exist, it must always be instantiated in a medium.”*

While Hayles’s reading of cybernetics pursues the field’s rhetorical ascent
of the ladder of abstraction as she frames the story of “how information lost
its body,” there is a second side to the cybernetic moment in the 1940s and
1950s, one that fed directly into the emergence of Silicon Valley and the
popular understanding of computational systems as material artifacts. We
can follow Wiener back down the ladder of abstraction, too, through a sec-
ond crucial cybernetic term, the notion of “feedback.” The feedback loop,

What Is an Algorithm? 31

as Hayles notes, is of interest to Wiener primarily as a universal intellectual
model for understanding how communication and control can be general-
ized across different systems.* But the feedback loop was also a crucial
moment of implementation for cybernetics, where the theoretical model
was tested through empirical experiments and, perhaps more important,
demonstrations.

Consider Wiener’s “moth” or “bedbug,” a single machine designed to
demonstrate a feedback loop related to seeking or avoiding light. Wiener
worked with electrical engineer Jerry Wiesner to create the machine, a sim-
ple mechanical apparatus with one photocell facing to the right and
another to the left, with their inputs directing a “tiller” mechanism that
would aim the cart’s wheels as they moved. The demonstration achieved its
intended purpose of showing lifelike behavior from a simple feedback
mechanism, creating a seeming existence proof both of the similarity of
mechanical and biophysical control mechanisms and of the efficacy of
cybernetics as the model for explaining them. In fact, as historian Ronald
Kline describes, the entire enterprise was a public relations stunt, the con-
struction of the robot financed by Life magazine, which planned to run an
article on cybernetics.*' Wiener’s demonstration machine presaged future
spectacles of human-machine interaction like early Silicon Valley icon
Douglas Engelbart’s “mother of all demos,” which first showcased several
aspects of a functional personal computer experience in 1968.

The theoretical aspirations of cybernetics were always dependent on
material implementation, a fact that has challenged generations of artifi-
cial intelligence researchers pursuing the platonic ideal of neural networks
that effectively model the human mind.* Kline reports that Life never ran
photos of Wiener’s moth because an editor felt the machine “illustrated
the analogy between humans and machines by modeling the nervous sys-
tem, rather than showing the human characteristics of computers, which
was Life’s objective.”* In the end, Wiener had built a bug. The material
context of the moth included not just a functioning feedback mechanism
on wheels but the cultural aperture through which that construct would
be viewed. In implementation, the mechanical feedback loop was over-
shadowed by an intellectual one, the relationship between a public scien-
tist and his editors at Life. As it turned out they were less interested in
Wiener’s argument, that feedback mechanisms could be computationally

32 Chapter 1

Figure 1.2 Sl
Norbert Wiener and his “moth” circa 1950. Alfred Eisenstaedt / The LIFE Picture

Collection / Getty Images.

and mechanically modeled, than they were in searching out the human in

the machine.
Thread 2: Metaphors for Magic

More than anything else, cybernetics was an attempt to create a new con-
trolling metaphor for communication, one that integrated technological,
biological, and social forms of knowledge. The story of Wiener’s moth illus-
trates the hazards of this approach: defining a controlling metaphor
for communication, and by extension for knowledge, requires a deep

What Is an Algorithm? 33

examination of how language itself can shape both ideas and reality. The
cybernetic vision of a unified biological and computational understanding
of the world has never left us, continuing to reappear in the technical and
critical metaphors we use to manipulate and understand computational
systems. Chun explores the deeper implications of this persistent interlac-
ing of computational and biological metaphors for code in Programmed
Visions, demonstrating the interconnections of research into DNA and
computer programming, and how those metaphors open up the interpre-
tive problem of computation. For Chun the key term is “software,” a word
she uses to encompass many of the same concerns I explore here in the
context of the algorithm.

Programmed Visions draws a direct link between the notion of
fungible computability reified by the Turing machine and the kinds of lin-
guistic magic that have come to define so many of our computational
experiences:

Software is unique in its status as metaphor for metaphor itself. As a universal imi-
tator/machine, it encapsulates a logic of general substitutability; a logic of ordering
and creative, animating disordering. Joseph Weizenbaum has argued that comput-
ers have become metaphors for “effective procedures,” that is, for anything that
can be solved in a prescribed number of steps, such as gene expression and clerical
work.*

With the “logic of general substitutability,” software has become a thing,
Chun argues, embodying the central function of magic—the manipulation
of symbols in ways that impact the world. This fundamental alchemy,
the mysterious fungibility of sourcery, reinforces a reading of the Turing
machine as an ur-algorithm that has been churning out effective comput-
ability abstractions in the minds of its “users” for eighty years. The “thing”
that software has become is the cultural figure of the algorithm: instanti-
ated metaphors for effective procedures. Software is like Bogost's cathedral
of computation, Chun argues, “a powerful metaphor for everything we
believe is invisible yet generates visible effects, from genetics to the invisi-
ble hand of the market, from ideology to culture.”* Like the crucifix or a
bell-tower signaling Sunday mass, software is ubiquitous and mysterious
even when it is obvious, manifesting in familiar forms that are only sym-
bolic representations of the real work it does behind the scenes.

The elegant formulation of software as a metaphor for metaphor,
paired with Chun’s quotation of Weizenbaum—the MIT computer

	Finn-1
	Finn-2
	Finn-3
	Finn-4
	Finn-5
	Finn-6
	Finn-7
	Finn-8
	Finn-9
	Finn-10

