arXiv:0907.4100v1 [cs.Al] 23 Jul 2009

Beyond Turing Machines”

Kurt Ammon
www.cstruct.org

Abstract

This paper discusses ”computational” systems capable of ”comput-
ing” functions not computable by predefined Turing machines if the
systems are not isolated from their environment. Roughly speaking,
these systems can change their finite descriptions by interacting with
their environment.

1 Introduction

Turing [8] introduced the concept of ”computing machines” which subse-
quently were called Turing machines. He proved that Hilbert’s decision prob-
lem (Entscheidungsproblem) is unsolvable, that is, there is no Turing machine
determining whether or not a given statement in first-order predicate calcu-
lus (a mathematical proposition in number theory) can be proved. Wegner
[11] writes that Turing’s precise characterization of what can be computed
established the respectability of computer science as a discipline. He argues
that Turing machines cannot capture the intuitive notion of what computers
compute when computing is extended to include interaction. His interaction
machines have been criticized as an unnecessary Kuhnian paradigm shift [12].
Prasse and Rittgen [7] write that Wegner’s ”interaction machines cannot
compute non-recursive functions, so Church’s thesis still holds”. This im-
plies that interaction machines cannot ”compute” functions not computable
by Turing machines.

*This work is licensed under the Creative Commons Attribution-No Derivative Works
3.0 Unported License (see http://creativecommons.org/licenses/by-nd/3.0/).


http://arxiv.org/abs/0907.4100v1
http://creativecommons.org/licenses/by-nd/3.0/

This paper proves that there is no Turing machine producing a sequence
of all computable functions on the set of natural numbers. The proof im-
plies the existence of ”computational” systems that cannot be modeled by
predefined Turing machines if the systems are not isolated from their envi-
ronment. Roughly speaking, these systems change their finite descriptions
by interacting with an environment whose development is not completely
predictable for practical and theoretical reasons. I argue that the proof even
applies to existing systems such as the Internet. Finally, I introduce a new
type of systems by requiring that they be capable of ”computing” functions
not computable by Turing machines.

2 Incompleteness Theorem

A computable function is a function that can be computed by a Turing ma-
chine, that is, it can be represented by an ordinary computer program. Thus,
a computable function on the set of natural numbers N into N can be re-
garded as a computer program producing a natural number in its output
from any natural number in its input. An example of such a function f is
f(n) = n+ 1 which produces the successor n + 1 of any natural number n.

The computable functions on the set of natural numbers can be regarded
as models of computer programs and systems. The restriction to computable
functions on the set of natural numbers is not relevant because inputs and
outputs of computer programs and systems are represented as binary digits.
Useful programs and systems should work for defined sets of inputs which
correspond to subsets of the set of natural numbers. Such a definition can be
extended to all natural numbers by assuming a default output for inputs for
which the program or system is not defined. Ordinarily, a program or system
is defined on a decidable set of inputs, that is, there is a program deciding
whether or not an input is admissible. Thus, the computable functions on
the set of natural numbers model an important class of computer programs
and systems.

Incompleteness Theorem: There is no Turing machine producing a
sequence of all computable functions fi, fs, ... on the set of natural numbers
N into N.

Proof. We assume that there is such a Turing machine. We define a new
computable function g on the set of natural numbers by g(n) = f,(n) + 1
for all natural numbers n. Because the sequence fi, fs, ... contains all



computable functions according to our original assumption, there is a natural
number n such that g(z) = f,(z) for all natural numbers z. This immediately
yields the contradiction g(n) = f,(n) and g(n) = f.(n) + 1 because of the
definition of the function g. This means that our original assumption is false,
that is, there is no Turing machine producing all computable functions f;,
f2, ... on the set of natural numbers.

The construction of the computable function ¢ in the proof can be rep-
resented by a Turing machine T'. Of course, T can be incorporated into any
Turing machine. The proof implies that no Turing machine can produce all
computable functions fi, fo, ... on the set of natural numbers no matter
how T' is incorporated. In particular, T' can be incorporated into the Turing
machine whose existence is assumed in the proof so that the extended Tur-
ing machine produces the sequence f;, fa, ... and the function g. But the
extended machine is different from the original machine and thus its applica-
tion would contradict our assumption that there is a (single) Turing machine
producing all computable functions on the set of natural numbers.

Because any formal system can simply be defined as a theorem-proving
Turing machine (see, for example, [4, p. 72]), the theorem also implies that
any formal theory is incomplete in the sense that it cannot ”capture” all
computable functions on the set of natural numbers.

3 Creative Systems

Let C be a system capable of performing the reasoning processes required for
proving my simple incompleteness theorem. Thus, C' is capable of construct-
ing a computable function g on the set of natural numbers not produced by
any given Turing machine M. Figure [Il illustrates the corresponding proof
which shows that there is no predefined Turing machine M producing all
computable functions fi, fs, ... on the set of natural numbers C' can con-
struct.

A difference between C' and a Turing machine is that C'is not regarded as
a static predefined object isolated from its environment. Rather, C' and the
Turing machine M in the proof are regarded as separate interacting entities
in the sense that C assumes the existence of a Turing machine M producing
all computable functions fi, fs, ... on the set of natural numbers in order to
construct a computable function g not produced by M. Roughly speaking,
C can change itself by interacting with its environment, that is, the Turing



uses produces
C > M > fl; fg,

constructs

q # fi, fo, ..

Figure 1: Proof

machine M.

Because the capabilities of C' to construct computable functions cannot be
modeled by any predefined Turing machine, another model of such systems
seems to be required.

Computable functions can be represented by Turing machines or com-
puter programs, that is, they have finite descriptions. The set of such de-
scriptions can be effectively enumerated. This means that there is a Turing
machine generating a sequence containing all finite descriptions, for example,
in ascending length. For these reasons, my simple incompleteness theorem
implies that the function deciding whether or not a given description repre-
sents a computable function on the set of natural numbers is not computable.
If this function were computable, its application to an effective enumeration
of descriptions would yield an effective enumeration of all computable func-
tions on the set of natural numbers. This contradicts my theorem. Thus,
there is no Turing machine deciding whether or not a given description is a
computable function, that is, this decision problem (Entscheidungsproblem)
is unsolvable.

Furthermore, my simple incompleteness theorem implies that systems
capable of proving this theorem seem to be capable of ”solving” the above
decision problem in the sense that they can construct more and more powerful
computable functions on the set of natural numbers beyond the limits of any
predefined Turing machine. This suggests the following definition of a new
type of systems:

Definition: A system is called creative if it is capable of ”com-
puting” non-computable functions, that is, determining values of
non-computable functions for given arguments.

4



With regard to this definition, creative systems can contain any computable
function. Thus, they may be regarded as an extension of the concept of
Turing machines in the sense that they can ”compute” computable and non-
computable functions.

An architecture of creative systems was developed on the basis of ex-
periments with the SHUNYATA program [I], 2]. It is the first step towards
the implementation of a creative system. Roughly speaking, a creative sys-
tem comprises a reflection base and a varying number of evolving analytical
spaces.

Definition: The reflection base contains a universal program-
ming language, elementary domain-specific concepts, and knowl-
edge about this language and these concepts.

Because all computable functions can be represented in a universal program-
ming language, my simple incompleteness theorem implies that the reflection
base cannot be formalized completely.

Definition: Analytical spaces contain partial knowledge whose
domains of application are limited but ordinarily expand in the
course of the development of the analytical spaces.

Roughly speaking, the development of new knowledge in creative systems
can be summarized in the following principles:

Principles of Development:

1. The knowledge in analytical spaces arises from the reflection
base and preceding knowledge.

2. The development of knowledge involves the generation of
new analytical spaces and the unification of existing ones.

3. The economical variations of new knowledge tend to be pre-
served and the uneconomical ones to be destroyed.

For example, the reflection base may contain elementary knowledge about
constants and functions of a programming language.

A very simple programming task is the construction of a program produc-
ing the successor n+1 of any natural number n in its input. This program
can be constructed on the basis of the elementary knowledge that 1 is a nat-
ural number and x + y is a natural number for any natural numbers x and

y.



Another simple example is the construction of a Quicksort program
sort(L), which sorts the elements of a list L according to a given order
relation "z < y” (z is less than y) between any elements x and y of L. The
core of such a program can be represented by the functional pseudocode

append(sort(x € L : x < first(L)),

first(L),
sort(x € L : first(L) < x))), (1)

where the append function appends lists and first(L) is the first element of
a list L. In order to sort a list L, the program (II) sorts the elements z € L
that are less than its first element first(L) and the elements = € L that are
greater than first(L). The recursive application of this ”divide-and-conquer”
strategy yields smaller and smaller partial lists or empty lists which need
not be sorted. Finally, the program ([II) generates a sorted list containing all
elements of L by successively appending all partial lists previously sorted.

The Quicksort program (I]) can also be constructed on the basis of ele-
mentary knowledge about the functions it contains. Roughly speaking, this
knowledge need merely give the domains and ranges of the functions, that
is, the sets on which the functions are defined and the sets of values the
functions may take on. For example, the proposition x < first(L) in ()
can be constructed on the basis of the knowledge that first(L) is an element
of L and = < y is a proposition for any elements x € L and y € L. An
efficient selection of the functions used in the Quicksort program (II) seems
feasible because they are very elementary such as the append function or even
explicitly contained in the programming task such as the order relation ” <”.

For example, the SHUNYATA program generated theorem-proving pro-
grams by analyzing proofs of simple theorems on the basis of elementary
knowledge about the functions the programs are composed of [1]. The de-
velopment of these programs illustrates very simple aspects of the principles
given above, for example, the unification of analytical spaces and the gen-
eration of economical variations. The theorem-proving programs developed
by SHUNYATA generated proofs of further theorems, in particular, a proof
of SAM’s Lemma which is simpler than any proof known before. The com-
plexity of SAM’s Lemma more or less represented the state of the art in
automated theorem proving [II, p. 561].

Godel’s incompleteness theorem says that every formal number theory
contains an undecidable formula, that is, neither the formula nor its negation



are provable in the theory. The main problem in the proof of Godel’s theorem
is the construction of such a formula. Analogously to the construction of the
Quicksort program (I), an undecidable formula can be constructed on the
basis of elementary rules for the formation of formulas, that is, on the basis
of elementary knowledge about the symbols the formula contains. Ammon

[2] describes a proof of Godel’s theorem and refers to further experiments
with the SHUNYATA program.

4 Discussion

The Internet is a network of a varying number of computer programs and sys-
tems. My simple incompleteness theorem implies that no predefined formal
system can completely model such a network because a program (computable
function) not ”captured” by the formal system can be constructed and added
to the network. The proof of my theorem implies that the construction of
this program can be achieved automatically.

Systems capable of communicating and interacting with humans more
naturally than existing systems should be capable of reconstructing com-
putable functions implicitly used in human forms of communication. My
theorem implies that there is no predefined Turing machine or formal system
modeling this communication.

Computer programs must be tested and debugged before they can be used
in practice. My theorem implies that there is no general predefined algorithm
for the verification of programs because a program (computable function) not
”captured” by the algorithm can be constructed from the algorithm itself.
Rather, the verification of programs is achieved on the basis of experience.

The Turing machine producing a sequence of computable functions fi,
f2, ... in the proof of my incompleteness theorem can be regarded as an
analytical space. The construction of another Turing machine producing f;,
fa2, ... and a computable function g not produced by the original machine can
be regarded as the construction of a new analytical space. Thus, my simple
theorem implies that all analytical spaces cannot be unified into a single
analytical space. Roughly speaking, the development of new knowledge in
analytical spaces cannot be regarded as a completely describable ”closed
box”. Rather, it is an open process which may transcend any frame specified
in advance.

My work can also be regarded as an investigation with the aid of com-



puters why Hilbert’s decision problem (Entscheidungsproblem) is unsolvable
because creative systems can determine beyond the limits of any predefined
algorithm whether or not a statement in predicate calculus can be proved.

Church’s thesis states that every effectively calculable function is general
recursive [5l, pp. 317-323]. Turing’s thesis, which is equivalent to Church’s
thesis, states that every function that would be naturally regarded as com-
putable is computable under his definition, that is, by a Turing machine [5,
pp. 376-381]. My work should not be regarded as a refutation of Church’s or
Turing’s thesis. Rather, it sheds new light on these theses and on Hilbert’s de-
cision problem (Entscheidungsproblem). In particular, it proves the existence
of systems ”computing” non-computable functions if ”computing” means de-
termining values of functions for given arguments. But these systems have
no complete finite descriptions that can be given in advance. Rather, they
can transcend any predefined formal description.

5 Related Work

Turing [9, 10] discusses whether "it is possible for machinery to show intel-
ligent behaviour”. Referring to Godel’s theorem and other, in some respects
similar, results due to Church, Kleene, Rosser, and himself, Turing [9], p. 445]
writes "that there are limitations to the powers of any particular machine”.
Turing [10], p. 4] states:

The argument from Goédel’s and other theorems ... rests essen-
tially on the condition that the machine must not make errors.
But this is not a requirement for intelligence.

He argues that a "man provided with paper, pencil, and rubber, and subject
to strict discipline” can "produce the effect of a computing machine”, but
”discipline is certainly not enough in itself to produce intelligence” [10] p. 9
and p. 21]. My simple incompleteness theorem confirms that the powers of
any particular Turing machine are limited. The theorem implies that sys-
tems capable of proving the theorem and interacting with their environment
cannot be modeled by any predefined Turing machine. Thus, ”ordinary com-
putational systems” suitably equipped to prove the theorem and to interact
with their environment can in principle transcend the powers of any machine
completely specified in advance. My theorem implies that such systems are
necessarily empirical and fallible in the sense that a complete predefined for-
malization of their truth judgments, for example, whether a given computer



program represents a computable function on the set of natural numbers, is
impossible.

My theorem and principles about creative systems are compatible with
Post’s view [0l p. 417]:

... logic must ... in its very operation be informal. Better still,
we write

The Logical Process is Essentially Creative.

Wegner [11] argues that ”interaction is more powerful than algorithms”.
My simple incompleteness theorem can be regarded as a mathematical proof
of his thesis. Moreover, the theorem and its proof imply the existence of
systems ”computing” non-computable functions, that is, determining values
of non-computable functions for given arguments. In this sense, they confirm
the view of Wegner and Goldin [12] ”that neither logic nor algorithms can
completely model computing and human thought.”

Wegner [11] writes that the incompleteness of interaction machines follows
from the fact that dynamically generated input streams are mathematically
modeled by infinite sequences over a finite alphabet, which are not enumer-
able. The ”incompleteness”, rather indeterminacy of creative systems follows
from their definition, in particular from the fact that no formal theory can
"capture” all computable functions on the set of natural numbers.

My incompleteness theorem implies that there is no general algorithm or
formal system for the verification of programs. This result is compatible with
Wegner’s view ”"that proving correctness is not merely hard but impossible”
because " open, empirical, falsifiable, or interactive systems are necessarily
incomplete” [11, p. 10]. Tt is also compatible with Godel’s statement [3, p.
84] that ”one has been able to define them [demonstrability and definability]
only relative to a given language”, that is, there is no general definition of
formal proofs but such definitions can only be given in particular formal
systems.

References

[1] Ammon, K. The automatic acquisition of proof methods. Proceedings
of the Seventh National Conference on Artificial Intelligence, St. Paul,
U.S.A, August 1988. Morgan Kaufmann, San Mateo, Calif., USA.



2]

[11]

[12]

Ammon, K. An automatic proof of Godel’s incompleteness theorem.
Artificial Intelligence 61, 1993, pp. 291-306. Elsevier Science Publishers
(North-Holland), Amsterdam.

Godel, K. Remarks Before the Princeton Bicentennial Conference on
Problems in Mathematics. In M. Davis (Ed.), The Undecidable, Raven
Press, New York, 1965.

Godel, K., On undecidable propositions of formal mathematical systems
- POSTSCRIPTUM. In M. Davis, The Undecidable, Raven, Press, New
York, 1965.

Kleene, S. C. Introduction to Metamathematics. Wolters-Noordhoff,
Groningen, and North-Holland, Amsterdam, 1952.

Post, E. Absolutely Unsolvable Problems and Relatively Undecidable
Propositions - Account of an Anticipation. In: M. Davis (Ed.), The
Undecidable, Raven Press, New York, 1965, pp. 338-433

Prasse, M., and Rittgen, P. Why Church’s Thesis Still Holds. Some
Notes on Peter Wegner’s Tracts on Interaction and Computability. The
Computer Journal, Vol 41, No. 6, 1998.

Turing, A. M. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Soci-
ety, Ser. 2, Vol. 42, 1936-37, pp. 230-265. Correction, wbid., Vol. 43,
1937, pp. 544-546.

Turing, A. M. Computing Machinery and Intelligence. Mind 59, No.
236, 1950, pp. 433-460.

Turing, A. M. Intelligent Machinery. In: B. Meltzer and D. Michie
(Eds.), Machine Intelligence 5, Edinburgh University Press, Edinburgh,
1969, pp. 3-23.

Wegner, P. Why Interaction is More Powerful than Algorithms, Com-
munications of the ACM 40 (5), 1997.

Wegner, P., and Goldin, D. Computation Beyond Turing Machines,
Communications of the ACM 46 (4), 2003.

10



	Introduction
	Incompleteness Theorem
	Creative Systems
	Discussion
	Related Work

