
Generative Adversarial Network (GAN) 
 
Generative Adversarial Networks (GANs) are a powerful class of neural networks that are used for 
unsupervised learning. It was developed and introduced by Ian J. Goodfellow in 2014. GANs are 
basically made up of a system of two competing neural network models which compete with each other 
and are able to analyze, capture and copy the variations within a dataset. 
 

Why were GANs developed in the 4rst place? 
It has been noticed most of the mainstream neural nets can be easily fooled into misclassifying things by 
adding only a small amount of noise into the original data. Surprisingly, the model after adding noise has 
higher conGdence in the wrong prediction than when it predicted correctly. The reason for such adversary 
is that most machine learning models learn from a limited amount of data, which is a huge drawback, as it 
is prone to overGtting. Also, the mapping between the input and the output is almost linear. Although, it 
may seem that the boundaries of separation between the various classes are linear, but in reality, they are 
composed of linearities and even a small change in a point in the feature space might lead to 
misclassiGcation of data. 
 

How do GANs work? 
Generative Adversarial Networks (GANs) can be broken down into three parts:  
 

• Generative: To learn a generative model, which describes how data is generated in terms of a 
probabilistic model. 

• Adversarial: The training of a model is done in an adversarial setting. 
• Networks: Use deep neural networks as the artiGcial intelligence (AI) algorithms for training 

purpose. 
 

In GANs, there is a generator and a discriminator. The Generator generates fake samples of data(be it an 
image, audio, etc.) and tries to fool the Discriminator. The Discriminator, on the other hand, tries to 
distinguish between the real and fake samples. The Generator and the Discriminator are both Neural 
Networks and they both run in competition with each other in the training phase. The steps are repeated 
several times and in this, the Generator and Discriminator get better and better in their respective jobs 
after each repetition. The working can be visualized by the diagram given below: 
 



 
Here, the generative model captures the distribution of data and is trained in such a manner that it tries to 
maximize the probability of the Discriminator in making a mistake. The Discriminator, on the other hand, 
is based on a model that estimates the probability that the sample that it got is received from the training 
data and not from the Generator. 

The GANs are formulated as a minimax game, where the Discriminator is trying to minimize its reward 
V(D, G) and the Generator is trying to minimize the Discriminator’s reward or in other words, maximize 
its loss. It can be mathematically described by the formula below: 
 

 
where, 

G = Generator 
D = Discriminator 
Pdata(x) = distribution of real data 
P(z) = distribution of generator 
x = sample from Pdata(x) 
z = sample from P(z) 
D(x) = Discriminator network 
G(z) = Generator network 

 
So, basically, training a GAN has two parts: 
 

• Part 1: The Discriminator is trained while the Generator is idle. In this phase, the network is 
only forward propagated and no back-propagation is done. The Discriminator is trained on real 
data for n epochs, and see if it can correctly predict them as real. Also, in this phase, the 
Discriminator is also trained on the fake generated data from the Generator and see if it can 
correctly predict them as fake. 

• Part 2: The Generator is trained while the Discriminator is idle. After the Discriminator is 
trained by the generated fake data of the Generator, we can get its predictions and use the results 
for training the Generator and get better from the previous state to try and fool the Discriminator. 

 
The above method is repeated for a few epochs and then manually check the fake data if it seems genuine. 



If it seems acceptable, then the training is stopped, otherwise, it is allowed to continue for few more 
epochs. 
 

Different types of GANs: 
GANs are now a very active topic of research and there have been many different types of GAN 
implementation. Some of the important ones that are actively being used currently are described below: 
 

1. Vanilla GAN: This is the simplest type GAN. Here, the Generator and the Discriminator are 
simple multi-layer perceptrons. In vanilla GAN, the algorithm is really simple, it tries to 
optimize the mathematical equation using stochastic gradient descent. 

2. Conditional GAN (CGAN): CGAN can be described as a deep learning method in which some 
conditional parameters are put into place. In CGAN, an additional parameter ‘y’ is added to the 
Generator for generating the corresponding data. Labels are also put into the input to the 
Discriminator in order for the Discriminator to help distinguish the real data from the fake 
generated data. 

3. Deep Convolutional GAN (DCGAN): DCGAN is one of the most popular also the most 
successful implementation of GAN. It is composed of ConvNets in place of multi-layer 
perceptrons. The ConvNets are implemented without max pooling, which is in fact replaced by 
convolutional stride. Also, the layers are not fully connected. 

4. Laplacian Pyramid GAN (LAPGAN): The Laplacian pyramid is a linear invertible image 
representation consisting of a set of band-pass images, spaced an octave apart, plus a low-
frequency residual. This approach uses multiple numbers of Generator and Discriminator 
networks and different levels of the Laplacian Pyramid. This approach is mainly used because it 
produces very highquality images. The image is down-sampled at Grst at each layer of the 
pyramid and then it is again up-scaled at each layer in a backward pass where the image acquires 
some noise from the Conditional GAN at these layers until it reaches its original size. 

5. Super Resolution GAN (SRGAN): SRGAN as the name suggests is a way of designing a GAN 
in which a deep neural network is used along with an adversarial network in order to produce 
higher resolution images. This type of GAN is particularly useful in optimally up-scaling native 
low-resolution images to enhance its details minimizing errors while doing so. 

 

Sample Python code implementing a Generative Adversarial Network: 
GANs are very computationally expensive. They require high powered GPUs and a lot of time (a large 
number of epochs) to produce good results. For our example, we will be using the famous MNIST dataset 
and use it to produce a clone of a random digit. 
 

# importing the necessary libraries and the MNIST dataset 
import tensorflow as tf 
import numpy as np 
import matplotlib.pyplot as plt 
from tensorflow.examples.tutorials.mnist import input_data 
 
mnist = input_data.read_data_sets("MNIST_data") 
 
# defining functions for the two networks. 
# Both the networks have two hidden layers 
# and an output layer which are densely or 
# fully connected layers defining the 
# Generator network function 
def generator(z, reuse = None): 

with tf.variable_scope('gen', reuse = reuse): 
hidden1 = tf.layers.dense(inputs = z, units = 128, 
   activation = tf.nn.leaky_relu) 
hidden2 = tf.layers.dense(inputs = hidden1, units = 128,  
activation = tf.nn.leaky_relu) 
output = tf.layers.dense(inputs = hidden2, units = 784,   



activation = tf.nn.tanh) 
 
return output 
 

# defining the Discriminator network function 
def discriminator(X, reuse = None): 

with tf.variable_scope('dis', reuse = reuse): 
hidden1 = tf.layers.dense(inputs = X, units = 128, 
activation = tf.nn.leaky_relu) 
hidden2 = tf.layers.dense(inputs = hidden1, 
units = 128, activation = tf.nn.leaky_relu) 
logits = tf.layers.dense(hidden2, units = 1) 
output = tf.sigmoid(logits) 
return output, logits 

 
# creating placeholders for the outputs 
tf.reset_default_graph() 
 
real_images = tf.placeholder(tf.float32, shape =[None, 784]) 
z = tf.placeholder(tf.float32, shape =[None, 100]) 
 
G = generator(z) 
D_output_real, D_logits_real = discriminator(real_images) 
D_output_fake, D_logits_fake = discriminator(G, reuse = True) 
 
# defining the loss function 
def loss_func(logits_in, labels_in): 

return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits 
(logits = logits_in, labels = labels_in)) 

 
# Smoothing for generalization 
D_real_loss = loss_func(D_logits_real, 
tf.ones_like(D_logits_real)*0.9) 
D_fake_loss = loss_func(D_logits_fake, tf.zeros_like(D_logits_real)) 
D_loss = D_real_loss + D_fake_loss 
 
G_loss = loss_func(D_logits_fake, tf.ones_like(D_logits_fake)) 
 
# defining the learning rate, batch size, 
# number of epochs and using the Adam optimizer 
lr = 0.001 # learning rate 
 
# Do this when multiple networks 
# interact with each other 
 
# returns all variables created(the two 
# variable scopes) and makes trainable true 
tvars = tf.trainable_variables() 
d_vars =[var for var in tvars if 'dis' in var.name] 
g_vars =[var for var in tvars if 'gen' in var.name] 
 
D_trainer = tf.train.AdamOptimizer(lr).minimize(D_loss, var_list = 

d_vars) 
G_trainer = tf.train.AdamOptimizer(lr).minimize(G_loss, var_list = 

g_vars) 
 
batch_size = 100 # batch size 
epochs = 500 # number of epochs. The higher the better the result 
init = tf.global_variables_initializer() 
 
# creating a session to train the networks 
samples =[] # generator examples 
 



with tf.Session() as sess: 
sess.run(init) 
for epoch in range(epochs): 

num_batches = mnist.train.num_examples//batch_size 
 
for i in range(num_batches): 

batch = mnist.train.next_batch(batch_size) 
batch_images = batch[0].reshape((batch_size, 784)) 
batch_images = batch_images * 2-1 
batch_z = np.random.uniform(-1, 1, size =(batch_size, 
100)) 
_= sess.run(D_trainer, feed_dict 
={real_images:batch_images, z:batch__= 
sess.run(G_trainer, feed_dict ={z:batch_z}) 

 
print("on epoch{}".format(epoch)) 
 
sample_z = np.random.uniform(-1, 1, size =(1, 100)) 
gen_sample = sess.run(generator(z, reuse = True), feed_dict  

={z:sample_z}) 
 
samples.append(gen_sample) 
 

# result after 0th epoch 
plt.imshow(samples[0].reshape(28, 28)) 
 
# result after 499th epoch 
plt.imshow(samples[49].reshape(28, 28)) 
 
 
 
 
Output: 
 

on epoch0 
on epoch1 
... 
... 
... 
on epoch498 
on epoch499 
 

Result after 0th epoch: 
 

 
 
 



Result after 499th epoch: 
 

 
 
So, from the above example, we see that in the Grst image after 0th epoch, the pixels are scattered all 
over the place and we couldn’t Ggure anything out from it. But from the second image, we could see that 
the pixels are more systematically organized and we could Ggure out that it is the digit ‘7’ that the code 
has randomly chosen and the network has tried to make a clone of it. In our example, we have taken 500 
as the number of epochs. But you could increase that number to further refine your result. 
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