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Neural networks is one of the most powerful and widely used algorithms when it comes 
to the subfield of machine learning called deep learning. At first look, neural networks 
may seem a black box; an input layer gets the data into the “hidden layers” and after a 
magic trick we can see the information provided by the output layer. However, 
understanding what the hidden layers are doing is the key step to neural network 
implementation and optimization. 

In our path to understand neural networks, we are going to answer three questions: 
What, How and Why? 

 

WHAT is a Neural Network? 
The neural networks that we are going to considered are strictly called artificial neural 
networks, and as the name suggests, are based on what science knows about the human 
brain’s structure and function. 

Briefly, a neural network is defined as a computing system that consist of a number of 
simple but highly interconnected elements or nodes, called ‘neurons’, which are 
organized in layers which process information using dynamic state responses to external 
inputs. This algorithm is extremely useful, as we will explain later, in finding patterns 
that are too complex for being manually extracted and taught to recognize to the 
machine. In the context of this structure, patterns are introduced to the neural network 
by the input layer that has one neuron for each component present in the input data 
and is communicated to one or more hidden layers present in the network; called 
‘hidden’ only due to the fact that they do not constitute the input or output layer. It is in 
the hidden layers where all the processing actually happens through a system of 
connections characterized by weights and biases (commonly referred as W and b): the 
input is received, the neuron calculate a weighted sum adding also the bias and 
according to the result and a pre-set activation function (most common one is 
sigmoid, σ, even though it almost not used anymore and there are better ones like 
ReLu), it decides whether it should be ‘fired’ or activated. Afterwards, the neuron 
transmit the information downstream to other connected neurons in a process called 



‘forward pass’. At the end of this process, the last hidden layer is linked to the output 
layer which has one neuron for each possible desired output. 

 

 

 
Basic structure of a 2-layer Neural Network. Wi: Weight of the corresponding connection.  

Note: The input layer is not included when counting the number of layers present in the network. 

 

 

HOW does a Neural Network work? 
Now that we have an idea on how the basic structure of a Neural Network look likes, we 
will go ahead and explain how it works. In order to do so, we need to explain the 
different type of neurons that we can include in our network. 

The first type of neuron that we are going to explain is Perceptron. Even though its use 
has decayed today, understanding how they work will give us a good clue about how 
more modern neurons function. 

A perceptron uses a function to learn a binary classifier by mapping a vector of binary 
variables to a single binary output and it can also be used in supervised learning. In this 
context, the perceptron follows these steps: 

 

1. Multiply all the inputs by their weights w, real numbers that express how 
important the corresponding inputs are to the output, 

2. Add them together referred as weighted sum: ∑ wj xj, 

3. Apply the activation function, in other words, determine whether the 
weighted sum is greater than a threshold value, where -threshold is 
equivalent to bias, and assign 1 or less and assign 0 as an output. 

 

We can also write the perceptron function in the following terms: 

 



 
Notes: b is the bias and is equivalent to -threshold,  

w.x is the dot product of w, a vector which component is the weights, and x, a vector consisting of the inputs. 

 

 

One of the strongest points in this algorithm is that we can vary the weights and the bias 
to obtain distinct models of decision-making. We can assign more weight to those inputs 
so that if they are positive, it will favor our desired output. Also, because the bias can be 
understood as a measure of how difficult or easy is to output 1, we can drop or raise its 
value if we want to make more or less likely the desired output to happen. If we pay 
attention to the formula, we can observe that a big positive bias will make it very easy to 
output 1; however, a very negative bias will make the task of output 1 very unlikely. 

In consequence, a perceptron can analyze different evidence or data and make a 
decision according to the set preferences. It is possible, in fact, to create more complex 
networks including more layers of perceptrons where every layer takes the output of the 
previous one and weights it and make a more and more complex decisions. 

What wait a minute: If perceptrons can do a good job in making complex decisions, why 
do we need other type of neuron? One of the disadvantages about a network 
containing perceptrons is that small changes in weights or bias, even in only one 
perceptron, can severely change our output going from 0 to 1 or vice versa. What we 
really want is to be able to gradually change the behaviour of our network by 
introducing small modifications in the weights or bias. Here is where a more modern 
type of neuron come in handy (Nowadays its use has been replaced by other types like 
Tanh and lately, by ReLu): Sigmoid neurons. The main difference between a sigmoid 
neuron and a perceptron is that the input and the output can be any continuous value 
between 0 and 1. The output is obtained after applying the sigmoid function to the 
inputs considering the weights, w, and the bias, b. To visualize it better, we can write the 
following: 

 

 
 

So, the formula of the output is: 

 



 

If we perform a mathematical analysis of this function, we can make a graph of our 
function σ , shown below, and conclude that when z is large and positive the function 
reaches its maximum asymptotic value of 1; however, if z is large and negative, the 
function reaches its minimum asymptotic value of 0. Here is where the sigmoid function 
becomes very interesting because it is with moderate values of z that the function takes 
a smooth and close to linear shape. In this interval, small changes in weights (Δwj) or in 
bias (Δbj) will generate small changes in the output; the desired behaviour that we were 
looking for as an improvement from a perceptron. 

 

In [3]: 
z = np.arange(-10, 10, 0.3) 

sigm = 1 / (1 + np.exp(-z)) 

plt.plot(z, sigm, color = 'mediumvioletred', linewidth= 1.5) 

plt.xlabel('Z', size = 14, alpha = 0.8) 

plt.ylabel('σ(z)', size = 14, alpha = 0.8) 

a = plt.title('Sigmoid Function', size = 14) 

a = a.set_position([.5, 1.05]) 

  
Shape of the sigmoid function used in sigmoid neurons to obtain small changes in the output  

making small changes in weights or bias. z=-∑wj xj-b (graphic missing) 

 

 

We know that the derivative of a function is the measure of the rate at which the value 
y changes with respect to the change of the variable x. In this case, the variable y is our 
output and the variable x is a function of the weights and the bias. We can take 
advantage of this and calculate the change in the output using the derivatives, and 
particularly, the partial derivatives (with respect to w and with respect to b). You can 
read this post to follow the calculations but in the case of sigmoid function, the 
derivative will be reduce to calculate: f(z)*(1-f(z)). 

Here it’s a simple code that can be used to model a sigmoid function: 

 
 

'''Build a sigmoid function to map any value to a value between zero and one\n",  
Refers to case of logistic function defined by: s(z) = 1/(1+e^-z)  
which derivative is bell shape. derivative is equal to f(z)*(1-f(z))'''  
   
def sigmoid(x, deriv = False):  
    if deriv == True:  
        return x*(1-x)  
    return 1/(1+np.exp(-x)) 

 

We have just explained the functioning of every neuron in our network, but now, we 
can examine how the rest of the it works. A neural network in which the output from 
one layer is used as the input of the next layer is called feedforward, particularly because 
there is no loops involved and the information is only pass forward and never back. 

Suppose that we have a training set and we want to use a 3-layer neural network, in 
which we also use the sigmoid neuron we saw above, to predict a certain feature. Taking 



what we explain about the structure of a neural network, weights and bias need to be 
first assigned to the connections between neurons in one layer and the next layer. 
Normally, the biases and weights are all initialized randomly in a synapsis matrix. If we 
are coding the neural network in python, we can use the Numpy 
function np.random.random generating a Gaussian distributions (where mean is equal 
to 0 and standard deviation to 1) to have a place to start learning. 

 
 

#CreateSynapsis matrix  
syn0 = 2+np.random.random((3,4)) -1  
syn1 = 2+np.random.random((4,1)) -1 

 

After that, we will build the neural network starting with the Feedforward step to 
calculate the predicted output; in other words, we just need to build the different layers 
involved in the network: 

 

• layer0 is the input layer; our training set read as a matrix (We can called it 
X) 

• layer1 is obtained by apply the activation function a’ = σ(w.X+b), in our 
case, performing the dot multiplication between input layer0 and the 
synapsis matrix syn0 

• layer2is the output layer obtained by the dot multiplication 
between layer1 and its synapsis syn1 

 

We will also need to iterate over the training set to let the network learn (we will see 
this later). In order to do so, we will add a for loop. 

 

 
 

#For loop iterate over the training set  
for i in range(60000):  
      
    #First layer is the input  
    layer0 = X  
      
    #Second layer can be obtained with the multiplication 

of each layer   
    #and its synapsis and then running sigmoid function   
    layer1 = sigmoid(np.dot(layer0, syn0))  
      
    #Do the same with l1 and its synapsis   
    layer2 = sigmoid(np.dot(layer1,syn1)) 

 

Until now, we have created the basic structure of the neural network: the different 
layers, the weights and bias of the connection between the neurons, and the sigmoid 
function. But none of this explains how the neural network can do such a good job in 
predicting patterns in a dataset. And this is what will take us to our last question. 



 

WHY Neural Networks are able to learn? 
The main strength of machine learning algorithms is their ability to learn and improve 
every time in predicting an output. But what does it mean that they can learn? In the 
context of neural networks, it implies that the weights and biases that define the 
connection between neurons become more precise; this is, eventually, the weights and 
biases are selected such as the output from the network approximates the real value y(x) 
for all the training inputs. 

So, how do we quantify how far our prediction is from our real value in order for us to 
know if we need to keep searching for more precise parameters? For this aim, we need 
to calculate an error or in other words, define a cost function (Cost function is not other 
thing that the error in predicting the correct output that our network has; in other 
terms, it is the difference between the expected and the predicted output). In neural 
networks, the most commonly used one is the quadratic cost function, also called mean 
squared error, defined by the formula: 

 

 
w and b referred to all the weights and biases in the network, respectively.  

n is the total number of training inputs. a is the outputs when x is the input. ∑ is the sum over all training inputs. 

 

 

This function is preferred over the linear error due to the fact that in neural networks 
small changes in weights and biases do not produces any change in the number of 
correct outputs; so using a quadratic function where big differences have more effect on 
the cost function than small ones help figuring out how to modify these parameters. 

On the other hand, we can see that our cost function become smaller as the output is 
closer to the real value y, for all training inputs. The main goal of our algorithm is to 
minimize this cost function by finding a set of weights and biases to make it as small as 
possible. And the main tool to achieve this goal is an algorithm called Gradient Descent. 

Then, the next question that we should answer is how we can minimize the cost 
function. From calculus, we know that a function can have global maximum and/or 
minimum, that is, where the function achieves the maximum or minimum value that it 
can have. We also know that one way to obtained that point is calculating derivatives. 
However, it is easy to calculate when we have a function with two variables but in the 
case of neural network, they include a lot of variables which make this computation 
quite impossible to make. 

Instead, let’s take a look at the graph below of a random function: 



 
 

We can see that this function has a global minimum. We could, as we said before, 
compute the derivatives to calculate where the minimum is located or we could take 
another approach. We can start in a random point and try to make a small move in the 
direction of the arrow, we would mathematically speaking, move Δx in the direction x 
and Δy in the direction of y, and calculate the change in our function ΔC. Because the 
rate of change in a direction is the derivative of a function, we could express the change 
in the function as: 

 

 
 

Here, we will take the definition from calculus of the gradient of a function: 

 

 
Gradient of a function: Vector with partial derivatives 

 

Now, we can rewrite the change in our function as: 

 
Gradient of C relates the change in function C to changes in (x,y) 

 

So now, we can see what happens with cost function when we choose a certain change 
in our parameters. The amount that we choose to move in any direction is 
called learning rate, and it is what define how fast we move towards the global 
minimum. If we choose a very small number, we will need to make a too many moves to 



reach this point; however, if we choose a very big number, we are at risk of passing the 
point and never be able to reach it. So the challenge is to choose the learning rate small 
enough. After choosing the learning rate, we can update our weights and biases and 
make another move; process that we repeat in each iteration. 

So, in few words, the gradient descent works by computing the gradient ∇C repeatedly, 
and then updating the weights and biases, and trying to find the correct values that 
minimize, in that way, the cost of function. And this is how the neural network learns. 

Sometimes, calculating the gradient can be very complex. There is, however, a way to 
speed up this calculation called stochastic gradient descent. This works by estimating the 
gradient ∇C by computing instead the gradient for a small sample of randomly chosen 
training inputs. Then, this small samples are average to get a good estimate of the true 
gradient, speeding up gradient descent, and thus learning faster. 

But wait a second? How do we compute the gradient of the cost function? Here is where 
another algorithm makes an entry: Backpropagation. The goal of this algorithm is to 
compute the partial derivatives of the cost function with respect to any weight w and 
any bias b; in practice, this means calculating the error vectors starting from the final 
layer and then, propagating this back to update the weights and biases. The reason why 
we need to go back is that the cost is a function of the output of our network. There are 
several calculations and errors that we need to compute whose formula are given by the 
backpropagation algorithm: 1) Output error (δL) related to the element wise (⦿) 
product of the gradient (▽C) by the derivative of activation function (σ′(z)), 2) error of 
one layer (ẟl) in terms of the error in the next layer related to the transpose matrix of the 
weights (Wl+1) multiplied by the error of the next layer (ẟl+1) and the element wise 
multiplication of the derivative of activation function, 3) rate of change of the cost with 
respect to any bias in the network: this means that the partial derivative of C with 
respect to any bias (∂C/∂bj) is equal to the error ẟl, 4) rate of change of the cost with 
respect to any weight in the network: meaning that the partial derivative of C with 
respect to any weight (∂C/∂wj) is equal to the error (ẟl) multiplied by activation of the 
neuron input. These last two calculation constitute the gradient of the cost function. 
Here, we can observe the formulas. 

 

 
Four essential formulas given by backpropagation algorithms that are useful to implement neural networks 

 

The backpropagation algorithm calculates the gradient of the cost function for only one 
single training example. As a consequence, we need to combine backpropagation with a 
learning algorithm, for instance stochastic gradient descent, in order to compute the 
gradient for all the training set. 



Now, how do we apply this to our neural network in Python?. Here, we can see step by 
step the calculations: 

               (a program text is missing here) 

 

Let’s wrap up everything… 
Now we can put all of these formulas and concepts that we have seen in terms of an 
algorithm to see how we can implement this: 

 

• INPUT: We input a set of training examples and we set the activation athat 
correspond for the input layer. 

• FEEDFORWARD: For each layer, we compute the function z = w . a + b, 
being a = σ(z) 

• OUTPUT ERROR: We compute the output error by using the formula #1 cited 
above. 

• BACKPROPAGATION: Now we backpropagate the error; for each layer, we 
compute the formula #2 cited above. 

• OUTPUT: We calculate the gradient descent with respect to any weight and 
bias by using the formulas #3 and #4. 

 

Of course, that there are more concepts, implementations and improvements that can be 
done to neural networks, which can become more and more widely used and powerful 
through the last years. But I hope this information can give you a hint on what a neural 
network is, how it works and learns using gradient descent and backpropagation. 
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