Quasimondo

Mario Klingemann, Artist

Stack Blur Algorithm by Mario Klingemann

At the left edge queue and
stack get prefilled with
leftmost edge pixel value

.._.l

[1[2]s]efs]e[7]e] LD [D

Kemel Pixels Queue Stack

The kernel progresses one pixel to the right.

The new value is added to the queue at the right and

the leftmost queue value is removed

Values in the left half of the queue get subtracted from the
stack, values in the right half get added to the stack

The stack is actually just a sum of all the values, not a structurs
it's just here to visualize the weight of the single values

The blurred value is simply the mean of the sum.

- [r]2[s]4]s]e]7]s]

Kernel Pixels : Queue Stack

From now on the process repeats until the kemel
is outside the right edge (at the right edge the
righmost pixel value gets added when the parts
of the kernel are outside)

When the end of the line is reached the kernel moves down
one line and starts refilling like in step #1

L - |23]4]s]s]7]5]
Kernel

NN—/

Poels : Queue Stack

Lr[2]s]4[s]e]7]s]

Kernel Pixals : Queue Stack

N
wl w
N =

N i 2 .
1]2]3]4a]s|e]7]8] E1|2 3|4EI Fak 2343

Kernel — Pixels ! Queue Stack

When the horizontal pass is finished, the process repeats in vertical direction using the results of the horizontal pass.

In 2004 | required a fast but still good looking image blur and did not find any
existing solutions that fit both requirements. Either they were classical Gaussian
blurs that resulted in perfectly smooth blurs at the price of slow processing time or
they were simple box blurs that were reasonably fast but resulted in a blocky look.
So | wrote my own blur algorithm which tries to be a compromise between the two:

| called it Stack Blur because this describes best how this filter works internally: it
creates a kind of moving stack (or maybe a “Tower of Hanoi” kind of structure) of
colors whilst scanning through the image. This “tower” controls the weights of the
single pixels within the convolution kernel and gives the pixel in the center the
highest weight. The secret of the speed is that the algorithm just has to add one new
pixel to the right side of the stack and at the same time remove the leftmost pixel.
The remaining colors on the topmost layer of the stack are either added on or
reduced by one, depending on if they are on the right or on the left side of the stack.

The original version was written in Java for Processing, but over the years | and
other people have ported it to many different languages and platforms: C, C++,
JavaScript, ActionScript, CUDA, iOS, Go etc. It has become part of some major
libraries, frameworks and applications.

